Home
Class 12
MATHS
The value of sin^(-1){sin(-600^(@))} is...

The value of `sin^(-1){sin(-600^(@))}` is

A

`(pi)/(3)`

B

`-(pi)/(3)`

C

`(2pi)/(3)`

D

`-(2pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin^{-1}(\sin(-600^\circ)) \), we will follow these steps: ### Step 1: Convert degrees to radians First, we convert \(-600^\circ\) to radians. The conversion formula is: \[ \text{radians} = \text{degrees} \times \frac{\pi}{180} \] So, \[ -600^\circ = -600 \times \frac{\pi}{180} = -\frac{600\pi}{180} = -\frac{10\pi}{3} \] ### Step 2: Simplify the angle Next, we simplify \(-\frac{10\pi}{3}\) to find an equivalent angle within the range of \([-\pi, \pi]\). We can add \(2\pi\) (which is equivalent to \( \frac{6\pi}{3} \)) to \(-\frac{10\pi}{3}\): \[ -\frac{10\pi}{3} + 2\pi = -\frac{10\pi}{3} + \frac{6\pi}{3} = -\frac{4\pi}{3} \] Now, \(-\frac{4\pi}{3}\) is still outside the range of \([- \frac{\pi}{2}, \frac{\pi}{2}]\). We can add another \(2\pi\): \[ -\frac{4\pi}{3} + 2\pi = -\frac{4\pi}{3} + \frac{6\pi}{3} = \frac{2\pi}{3} \] ### Step 3: Find the sine of the angle Now we need to find \( \sin\left(-\frac{10\pi}{3}\right) \): \[ \sin\left(-\frac{10\pi}{3}\right) = \sin\left(\frac{2\pi}{3}\right) \] Since sine is an odd function: \[ \sin\left(-\theta\right) = -\sin\left(\theta\right) \] Thus, \[ \sin\left(-\frac{10\pi}{3}\right) = -\sin\left(\frac{10\pi}{3}\right) \] And since \(\frac{10\pi}{3}\) is equivalent to \(\frac{2\pi}{3}\) in sine: \[ \sin\left(\frac{2\pi}{3}\right) = \sin\left(\pi - \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] Thus, \[ \sin\left(-\frac{10\pi}{3}\right) = -\frac{\sqrt{3}}{2} \] ### Step 4: Find the inverse sine Now we find \( \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) \). The value of \( \sin^{-1}(x) \) is defined in the range \([- \frac{\pi}{2}, \frac{\pi}{2}]\). The angle whose sine is \(-\frac{\sqrt{3}}{2}\) in this range is: \[ -\frac{\pi}{3} \] ### Final Answer Thus, the value of \( \sin^{-1}(\sin(-600^\circ)) \) is: \[ \boxed{-\frac{\pi}{3}} \]

To find the value of \( \sin^{-1}(\sin(-600^\circ)) \), we will follow these steps: ### Step 1: Convert degrees to radians First, we convert \(-600^\circ\) to radians. The conversion formula is: \[ \text{radians} = \text{degrees} \times \frac{\pi}{180} \] So, ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|71 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

The value of sin^(-1) (sin 10) is

The value of sin^(-1)(sin'(3pi)/(5)) is "….."

The value of sin^(-1)(sin'(3pi)/(5)) is "….."

The value of sin^(-1)(sin((3pi)/(5)))

The value of (sin50^(@))/(sin130^(@)) is ….. .

The value of Sin^-1(sin10) is

The value of sin 10^(@) sin 30^(@) sin 50^(@) sin 70^(@) is equal to .

The value of cos^(-1)(-1)+sin^(-1)(1) is

The value of (sin 1^(@) +sin 3^(@) + sin 5^(@) +sin 7^(@))/(cos 1^(@)*cos 2^(@)sin 4^(@)) is __________

Write the value of sin^-1(sin1550^@)

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Chapter Test
  1. The value of sin^(-1){sin(-600^(@))} is

    Text Solution

    |

  2. Solve sin^(-1)(1-x)-2sin ^(-1)x=pi/2

    Text Solution

    |

  3. If (tan^(-1)x)^2+(cot^(-1)x)^2=(5pi^2)/8, then find xdot

    Text Solution

    |

  4. If tantheta + tan(theta + pi/3) + tan(theta-pi/3)= Ktan3theta, then K ...

    Text Solution

    |

  5. If -1 le x le -1/2, then sin^(-1)(3x-4x^3) equals

    Text Solution

    |

  6. The numerical value of "tan"(2tan^(-1)(1/5)-pi/4 is equal to

    Text Solution

    |

  7. If tan(x+y)=33, and x= tan^(-1)3, then: y=

    Text Solution

    |

  8. Two angles of a triangle are cot^-1 2 and cot^-1 3, then the third ang...

    Text Solution

    |

  9. The greater of the two angles A=2tan^(-1)(2sqrt(2)-1) and B=3sin^(-1)(...

    Text Solution

    |

  10. Let a, b and c be positive real numbers. Then prove that tan^(-1) sqrt...

    Text Solution

    |

  11. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2) the value of x^(100)+y^(10...

    Text Solution

    |

  12. The value of (alpha^(3))/(2) cosec^(2) ((1)/(2) tan^(-1) ((alpha)/(bet...

    Text Solution

    |

  13. If a,b are positive quantitis and if a(1)=(a+b)/(2), b(1)=sqrt(a(1)b) ...

    Text Solution

    |

  14. tan""(2pi)/(5)-tan""(pi)/(15)-sqrt3tan""(2pi)/(5)tan""(pi)/(15) is equ...

    Text Solution

    |

  15. If a(1), a(2), a(3),...., a(n) is an A.P. with common difference d, th...

    Text Solution

    |

  16. If x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3)) , then -

    Text Solution

    |

  17. Which of the following angles is greater? theta1=sin^(-1)+sin^(-1)1/3o...

    Text Solution

    |

  18. The value of cos[1/2 cos^(-1){cos(sin^(-1)((sqrt63)/(8)))}] is

    Text Solution

    |

  19. Solve for x: - tan^(-1)("x"+1)+tan^(-1)("x"-1)=tan^(-1) (8/31)

    Text Solution

    |

  20. If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)...

    Text Solution

    |

  21. The sum of the two angles cot^(-1) 3 and cosec^(-1) sqrt(5) is

    Text Solution

    |