Home
Class 12
MATHS
The value of cot(sum(n=1)^23 cot^-1(1+su...

The value of `cot(sum_(n=1)^23 cot^-1(1+sum_(k=1)^n 2k))` is (a) `23/25` (b) `25/23` (c) `23/24` (d) `25/26`

A

`23/25`

B

`25/23`

C

`23/24`

D

`24/23`

Text Solution

Verified by Experts

Clearly
`cot^(-1)(1+underset(k=1)overset(n)Sigma 2k)=cot^(-1)1+2underset(k=1)overset(n_Sigmak)=cot^(-1)1+n(n+1)`
`=tan^(-1)(1)/(1+n(n+1)}=(tan^(-1)(n+1)-n)/(1+n(n+1))`
`tan^(-1)(n1)-tan^(-1)n`
`therefore underset(n=1)overset(23)Sigma(tan^(-1)(n+1)-tan^(-1)n)`
`tan^(-1)24-tan^(-1)1`
`tan^(-1)(24-1)/(1+24xx1)=tan^(-1)(23)/(25)=cot^(-1)25/23`
Hence `cot[underset(n=1)overset(23)Sigma{cot^(-1)(1+underset(k=1)overset(n)Sigma 2k)}]=cot^(-1)25/23=25/23`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|71 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

The value of cot sum_(n=1)^(19)(cot^(-1)(1+sum_(p=1)^(n)2p)) is equal to (a) (21)/(19) (b) (19)/(21) (c) -(19)/(21) (d) -(21)/(19)

The value of cotsum_(n=1)^(19)cot^(-1)(1+sum_(p=1)^(n)2p) is equal to (a) (21)/(19) (b) (19)/(21) (c) -(19)/(21) (d) -(21)/(19)

The value of cot[cos^(-1)(7/25)] is

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

Find sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n (ijk)

Evaluate : sum_(k=1)^n (2^k+3^(k-1))

The value of lim_(ntooo)sum_(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

The value of lim _( n to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

Solve : (a) 3n+7=25 (b) 2p-1=23

The value of int_0^1lim_(n->oo)sum_(k =0)^n(x^(k+2)2^k)/(k!)dx is: (a) e ^(2) -1 (b) 2 (c) (e ^(2)-1)/(2) (d) (e ^(2) -1)/(4)

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Chapter Test
  1. The value of cot(sum(n=1)^23 cot^-1(1+sum(k=1)^n 2k)) is (a) 23/25 (b)...

    Text Solution

    |

  2. Solve sin^(-1)(1-x)-2sin ^(-1)x=pi/2

    Text Solution

    |

  3. If (tan^(-1)x)^2+(cot^(-1)x)^2=(5pi^2)/8, then find xdot

    Text Solution

    |

  4. If tantheta + tan(theta + pi/3) + tan(theta-pi/3)= Ktan3theta, then K ...

    Text Solution

    |

  5. If -1 le x le -1/2, then sin^(-1)(3x-4x^3) equals

    Text Solution

    |

  6. The numerical value of "tan"(2tan^(-1)(1/5)-pi/4 is equal to

    Text Solution

    |

  7. If tan(x+y)=33, and x= tan^(-1)3, then: y=

    Text Solution

    |

  8. Two angles of a triangle are cot^-1 2 and cot^-1 3, then the third ang...

    Text Solution

    |

  9. The greater of the two angles A=2tan^(-1)(2sqrt(2)-1) and B=3sin^(-1)(...

    Text Solution

    |

  10. Let a, b and c be positive real numbers. Then prove that tan^(-1) sqrt...

    Text Solution

    |

  11. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2) the value of x^(100)+y^(10...

    Text Solution

    |

  12. The value of (alpha^(3))/(2) cosec^(2) ((1)/(2) tan^(-1) ((alpha)/(bet...

    Text Solution

    |

  13. If a,b are positive quantitis and if a(1)=(a+b)/(2), b(1)=sqrt(a(1)b) ...

    Text Solution

    |

  14. tan""(2pi)/(5)-tan""(pi)/(15)-sqrt3tan""(2pi)/(5)tan""(pi)/(15) is equ...

    Text Solution

    |

  15. If a(1), a(2), a(3),...., a(n) is an A.P. with common difference d, th...

    Text Solution

    |

  16. If x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3)) , then -

    Text Solution

    |

  17. Which of the following angles is greater? theta1=sin^(-1)+sin^(-1)1/3o...

    Text Solution

    |

  18. The value of cos[1/2 cos^(-1){cos(sin^(-1)((sqrt63)/(8)))}] is

    Text Solution

    |

  19. Solve for x: - tan^(-1)("x"+1)+tan^(-1)("x"-1)=tan^(-1) (8/31)

    Text Solution

    |

  20. If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)...

    Text Solution

    |

  21. The sum of the two angles cot^(-1) 3 and cosec^(-1) sqrt(5) is

    Text Solution

    |