Home
Class 12
MATHS
The value of x where xgt0 and tan(sec^(-...

The value of x where `xgt0 and tan(sec^(-1)(1/x))=sin(tan^(-1)2)` is

A

`sqrt(5)`

B

`sqrt(5)/(3)`

C

1

D

`2/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan(\sec^{-1}(1/x)) = \sin(\tan^{-1}(2)) \) for \( x > 0 \), we can follow these steps: ### Step 1: Set up the equation Let \( \theta = \sec^{-1}(1/x) \). Then we have: \[ \sec(\theta) = \frac{1}{x} \] ### Step 2: Find the relationship between \( \tan(\theta) \) and \( x \) Since \( \sec(\theta) = \frac{1}{\cos(\theta)} \), we can express \( \cos(\theta) \) as: \[ \cos(\theta) = x \] Using the identity \( \sec^2(\theta) = 1 + \tan^2(\theta) \), we can find \( \tan(\theta) \): \[ \tan^2(\theta) = \sec^2(\theta) - 1 = \left(\frac{1}{x}\right)^2 - 1 = \frac{1 - x^2}{x^2} \] Thus, \[ \tan(\theta) = \frac{\sqrt{1 - x^2}}{x} \] ### Step 3: Evaluate the right-hand side Now, we need to evaluate \( \sin(\tan^{-1}(2)) \). Let \( \alpha = \tan^{-1}(2) \), then: \[ \tan(\alpha) = 2 \] This means we can construct a right triangle where the opposite side is 2 and the adjacent side is 1. The hypotenuse \( h \) can be calculated as: \[ h = \sqrt{2^2 + 1^2} = \sqrt{4 + 1} = \sqrt{5} \] Now, we can find \( \sin(\alpha) \): \[ \sin(\alpha) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{2}{\sqrt{5}} \] ### Step 4: Set the two sides equal Now we have: \[ \tan(\sec^{-1}(1/x)) = \sin(\tan^{-1}(2) \] This gives us: \[ \frac{\sqrt{1 - x^2}}{x} = \frac{2}{\sqrt{5}} \] ### Step 5: Cross-multiply Cross-multiplying gives: \[ \sqrt{5} \cdot \sqrt{1 - x^2} = 2x \] ### Step 6: Square both sides Squaring both sides results in: \[ 5(1 - x^2) = 4x^2 \] Expanding this gives: \[ 5 - 5x^2 = 4x^2 \] ### Step 7: Rearrange the equation Rearranging the equation results in: \[ 5 = 9x^2 \] Thus, \[ x^2 = \frac{5}{9} \] ### Step 8: Solve for \( x \) Taking the square root gives: \[ x = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3} \] ### Final Answer The value of \( x \) is: \[ \boxed{\frac{\sqrt{5}}{3}} \]

To solve the equation \( \tan(\sec^{-1}(1/x)) = \sin(\tan^{-1}(2)) \) for \( x > 0 \), we can follow these steps: ### Step 1: Set up the equation Let \( \theta = \sec^{-1}(1/x) \). Then we have: \[ \sec(\theta) = \frac{1}{x} \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|71 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

sin (tan ^(-1)2x)

Solve : tan(cos^(-1) x) = sin (tan^(-1) 2)

The value of x that satisfies tan^(-1)(tan -3)=tan^(2)x is

The set of values of x for which tan^(-1)(x)/sqrt(1-x^(2))=sin^(-1) x holds is

Value of x satisfying tan(sec^(- 1)x)=sin(cos^(- 1)(1/(sqrt(5))))

The values of x satisfying "tan"^(-1) (x+3) -"tan"^(-1) (x-3) = "sin"^(-1)((3)/(5)) are

The value of int_(0)^(1)(tan^(-1)((x)/(x+1)))/(tan^(-1)((1+2x-2x^(2))/(2)))dx is

Solve for x :tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,x >0

Write the value of tan^(-1)x+tan^(-1)(1/x) for x<0

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Chapter Test
  1. The value of x where xgt0 and tan(sec^(-1)(1/x))=sin(tan^(-1)2) is

    Text Solution

    |

  2. Solve sin^(-1)(1-x)-2sin ^(-1)x=pi/2

    Text Solution

    |

  3. If (tan^(-1)x)^2+(cot^(-1)x)^2=(5pi^2)/8, then find xdot

    Text Solution

    |

  4. If tantheta + tan(theta + pi/3) + tan(theta-pi/3)= Ktan3theta, then K ...

    Text Solution

    |

  5. If -1 le x le -1/2, then sin^(-1)(3x-4x^3) equals

    Text Solution

    |

  6. The numerical value of "tan"(2tan^(-1)(1/5)-pi/4 is equal to

    Text Solution

    |

  7. If tan(x+y)=33, and x= tan^(-1)3, then: y=

    Text Solution

    |

  8. Two angles of a triangle are cot^-1 2 and cot^-1 3, then the third ang...

    Text Solution

    |

  9. The greater of the two angles A=2tan^(-1)(2sqrt(2)-1) and B=3sin^(-1)(...

    Text Solution

    |

  10. Let a, b and c be positive real numbers. Then prove that tan^(-1) sqrt...

    Text Solution

    |

  11. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2) the value of x^(100)+y^(10...

    Text Solution

    |

  12. The value of (alpha^(3))/(2) cosec^(2) ((1)/(2) tan^(-1) ((alpha)/(bet...

    Text Solution

    |

  13. If a,b are positive quantitis and if a(1)=(a+b)/(2), b(1)=sqrt(a(1)b) ...

    Text Solution

    |

  14. tan""(2pi)/(5)-tan""(pi)/(15)-sqrt3tan""(2pi)/(5)tan""(pi)/(15) is equ...

    Text Solution

    |

  15. If a(1), a(2), a(3),...., a(n) is an A.P. with common difference d, th...

    Text Solution

    |

  16. If x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3)) , then -

    Text Solution

    |

  17. Which of the following angles is greater? theta1=sin^(-1)+sin^(-1)1/3o...

    Text Solution

    |

  18. The value of cos[1/2 cos^(-1){cos(sin^(-1)((sqrt63)/(8)))}] is

    Text Solution

    |

  19. Solve for x: - tan^(-1)("x"+1)+tan^(-1)("x"-1)=tan^(-1) (8/31)

    Text Solution

    |

  20. If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)...

    Text Solution

    |

  21. The sum of the two angles cot^(-1) 3 and cosec^(-1) sqrt(5) is

    Text Solution

    |