Home
Class 12
MATHS
The number of solution of sin{sin^(-1)...

The number of solution of
`sin{sin^(-1)(log_(1//2)x)}+2|cos{sin^(-1)(x/2-3/2)}|=0` is

A

1

B

2

C

3

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sin\left(\sin^{-1}\left(\log_{\frac{1}{2}} x\right)\right) + 2\left|\cos\left(\sin^{-1}\left(\frac{x}{2} - \frac{3}{2}\right)\right)\right| = 0, \] we will break it down step by step. ### Step 1: Understanding the range of \(\log_{\frac{1}{2}} x\) The logarithm \(\log_{\frac{1}{2}} x\) is defined for \(x > 0\). The range of \(\log_{\frac{1}{2}} x\) is from \(-\infty\) to \(0\) as \(x\) varies from \(1\) to \(\infty\). To find the specific values for \(x\), we need: \[ \log_{\frac{1}{2}} x \in [-1, 1]. \] This translates to: \[ -1 \leq \log_{\frac{1}{2}} x \leq 0. \] Converting this to exponential form gives: \[ \frac{1}{2} \leq x < 1. \] ### Step 2: Analyzing the second term \(2|\cos(\sin^{-1}(\frac{x}{2} - \frac{3}{2}))|\) The expression \(\sin^{-1}(\frac{x}{2} - \frac{3}{2})\) is defined when \(-1 \leq \frac{x}{2} - \frac{3}{2} \leq 1\). Solving the inequalities: 1. \(\frac{x}{2} - \frac{3}{2} \geq -1\): \[ \frac{x}{2} \geq \frac{1}{2} \implies x \geq 1. \] 2. \(\frac{x}{2} - \frac{3}{2} \leq 1\): \[ \frac{x}{2} \leq \frac{5}{2} \implies x \leq 5. \] Thus, we have: \[ 1 \leq x \leq 5. \] ### Step 3: Finding the intersection of the ranges Now we combine the two ranges we found: 1. From \(\log_{\frac{1}{2}} x\): \(\frac{1}{2} \leq x < 1\). 2. From \(\sin^{-1}(\frac{x}{2} - \frac{3}{2})\): \(1 \leq x \leq 5\). The intersection of these intervals is: \[ 1 \leq x < 1 \quad \text{(which is empty)}. \] ### Step 4: Analyzing the equation Since the intersection of the ranges is empty, there are no values of \(x\) that satisfy both conditions. Therefore, the equation has no solutions. ### Conclusion The number of solutions to the equation is: \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|72 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

The number of solution (s) of the equation sin^(- 1)(1-x)-2sin^(- 1)x=pi/2 is/are

Number of solutions of the equation 2(sin^(-1)x)^2-sin^(-1)x-6=0 is

Number of solution of the equation 2sin^(-1)(x+2)=cos^(-1)(x+3) is :

Find the number of real solutions of the equation sin^(-1)(e^(x))+cos^(-1)(x^(2))=pi//2 .

Find number of solutions of the equation sin^(-1)(|log_(6)^(2)(cos x)-1|)+cos^(-1)(|3log_(6)^(2)(cos x)-7|)=(pi)/(2) , if x in [0, 4pi] .

Find number of solutions of the equation sin^(-1)(|log_(6)^(2)(cos x)-1|)+cos^(-1)(|3log_(6)^(2)(cos x)-7|)=(pi)/(2) , if x in [0, 4pi] .

The number of solution of the equation 2sin^(-1)((2x)/(1+x^(2)))-pi x^(3)=0 is equal to

The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1)x=pi/2+sin^(-1)x is 0 (b) 1 (c) 2 (d) 3

The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1)x=pi/2+sin^(-1)x is 0 (b) 1 (c) 2 (d) 3

The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x + 1) + cos^(-1) sqrt(x^(2) + x) = (3pi)/(2) is

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Section I - Solved Mcqs
  1. The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^2+...

    Text Solution

    |

  2. Find the number of real solutions to the equation sqrt(1+cos2x)=sqrt2 ...

    Text Solution

    |

  3. The number of solution of sin{sin^(-1)(log(1//2)x)}+2|cos{sin^(-1)(x...

    Text Solution

    |

  4. The value of "tan"(sin^(-1)("cos"(sin^(-1)x)))"tan"(cos^(-1)(sin(cos^(...

    Text Solution

    |

  5. A value of x satisfying tan(sec^(-1)x)=sin(cos^(-1).(1)/sqrt5) is

    Text Solution

    |

  6. Exhaustive set of values of parameter 'a' so that sin^(-1)x-tan^(-1)x=...

    Text Solution

    |

  7. If a le sin^(-1)x +cos^(-1)x+tan^(-1)x le b, then:

    Text Solution

    |

  8. If -1lexle0 then sin^(-1)x equals

    Text Solution

    |

  9. If tan^(-1) ((x+1)/(x-1))+tan^(-1)((x-1)/x)=tan^(-1)(-7) , then the va...

    Text Solution

    |

  10. Using mathematical induction , prove that tan^(-1)((1)/(3))+tan^(-1)((...

    Text Solution

    |

  11. If -1lexle0 then tan{1/2sin^(-1)(2x)/(1+x^(2))+1/2cos^(-1)(1-x^(2))/...

    Text Solution

    |

  12. If -1lexle0 then tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-x^(2)...

    Text Solution

    |

  13. sin [ tan^(-1). (1 - x^(2))/(2x) + cos^(-1) . (1-x^(2))/(1 + x^(2))] i...

    Text Solution

    |

  14. If -1lexle0 then sin{tan^(-1)((1-x^(2))/(2x))-cos^(-1)((1-x^(2))/(1+x...

    Text Solution

    |

  15. If |cos^-1((1-x^2)/(1+x^2))| < pi/3, then x belongs to the interval

    Text Solution

    |

  16. Find the value of, cos [tan^(-1) {sin (cot^(-1)x)}]

    Text Solution

    |

  17. Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

    Text Solution

    |

  18. If (sin^(-1)x)^(2)+(cos^(-1)x)^(2)=(5pi^(2))/(8) then x =

    Text Solution

    |

  19. tan ((pi)/(4) + (1)/(2) cos^(-1) x) + tan ((pi)/(4) - (1)/(2) cos^(-1)...

    Text Solution

    |

  20. The solution set of the equation cos^(-1)x-sin^(-1)x=sin^(-1)(1-x) i...

    Text Solution

    |