Home
Class 12
MATHS
Find the value of sin^(-1)(cos(sin^(-1)x...

Find the value of `sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))`

A

`(pi)/(4)`

B

`(pi)/(2)`

C

`(3pi)/(4)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^{-1}(\cos(\sin^{-1}x)) + \cos^{-1}(\sin(\cos^{-1}x)) \), we can follow these steps: ### Step 1: Rewrite the Inverse Functions We start by rewriting the inverse trigonometric functions in terms of each other. We know that: \[ \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \] Thus, we can express \( \sin^{-1}(x) \) as: \[ \sin^{-1}(x) = \frac{\pi}{2} - \cos^{-1}(x) \] ### Step 2: Substitute in the Expression Now, we can substitute \( \sin^{-1}(x) \) in our expression: \[ \sin^{-1}(\cos(\sin^{-1}x)) + \cos^{-1}(\sin(\cos^{-1}x)) \] We can rewrite \( \sin^{-1}(x) \) in terms of \( \cos^{-1}(x) \): \[ = \sin^{-1}(\cos(\frac{\pi}{2} - \cos^{-1}(x))) + \cos^{-1}(\sin(\cos^{-1}(x))) \] ### Step 3: Simplify the Cosine and Sine Functions Using the identity \( \cos(\frac{\pi}{2} - \theta) = \sin(\theta) \): \[ = \sin^{-1}(\sin(\cos^{-1}(x))) + \cos^{-1}(\sin(\cos^{-1}(x))) \] ### Step 4: Use the Properties of Inverse Functions Now, we know that: \[ \sin^{-1}(\sin(\theta)) = \theta \quad \text{for } \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \] and \[ \cos^{-1}(\sin(\theta)) = \frac{\pi}{2} - \theta \quad \text{for } \theta \in [0, \frac{\pi}{2}] \] Thus, we can simplify: \[ = \cos^{-1}(x) + \left(\frac{\pi}{2} - \cos^{-1}(x)\right) \] ### Step 5: Combine the Terms Now, combining the terms gives us: \[ = \frac{\pi}{2} \] ### Final Result Therefore, the value of the expression \( \sin^{-1}(\cos(\sin^{-1}x)) + \cos^{-1}(\sin(\cos^{-1}x)) \) is: \[ \frac{\pi}{2} \] ---

To solve the expression \( \sin^{-1}(\cos(\sin^{-1}x)) + \cos^{-1}(\sin(\cos^{-1}x)) \), we can follow these steps: ### Step 1: Rewrite the Inverse Functions We start by rewriting the inverse trigonometric functions in terms of each other. We know that: \[ \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \] Thus, we can express \( \sin^{-1}(x) \) as: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|72 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

Find the value of sin^(-1)x+sin^(-1)(1/x)+cos^(-1)x+cos^(-1)(1/x)dot

Find the value of : sin (sin^(-1) x + cos^(-1) x)

If alpha = sin^(-1) (cos(sin^-1) x)) and beta = cos^(-1) (sin (cos^(-1) x)) , then find tan alpha. tan beta.

If alpha=sin^(-1)(cos(sin^(-1)x))a n dbeta=cos^(-1)("sin"(cos^(-1)x)), then find tanalphadottanbeta

Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/2)}]

Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/2)}] .

If sin^(-1)x in (0, (pi)/(2)) , then the value of tan((cos^(-1)(sin(cos^(-1)x))+sin^(-1)(cos(sin^(-1)x)))/(2)) is :

Find the value of x for which sin^(-1) (cos^(-1) x) lt 1 and cos^(-1) (cos^(-1) x) lt 1

cos(a sin ^(-1)"1/x)

Find the value of, cos [tan^(-1) {sin (cot^(-1)x)}]

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Section I - Solved Mcqs
  1. If |cos^-1((1-x^2)/(1+x^2))| < pi/3, then x belongs to the interval

    Text Solution

    |

  2. Find the value of, cos [tan^(-1) {sin (cot^(-1)x)}]

    Text Solution

    |

  3. Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

    Text Solution

    |

  4. If (sin^(-1)x)^(2)+(cos^(-1)x)^(2)=(5pi^(2))/(8) then x =

    Text Solution

    |

  5. tan ((pi)/(4) + (1)/(2) cos^(-1) x) + tan ((pi)/(4) - (1)/(2) cos^(-1)...

    Text Solution

    |

  6. The solution set of the equation cos^(-1)x-sin^(-1)x=sin^(-1)(1-x) i...

    Text Solution

    |

  7. Number of triplets (x, y, z) satisfying sin^(-1)x+cos^(-1)y+sin^(-1)z=...

    Text Solution

    |

  8. The complete set of values of x satisfying the inequality sin^(-1)(si...

    Text Solution

    |

  9. If cos^(-1)(cos 4)gt3x^(2)-4x then

    Text Solution

    |

  10. The number of real solutions (x, y), where |y|= sin x , y= cos^(-1)(c...

    Text Solution

    |

  11. If u=cot^(-1)sqrt(cos theta) -tan^(-1)sqrt(cos theta) then sin u=

    Text Solution

    |

  12. A value of x satisfying tan(sec^(-1)x)=sin(cos^(-1).(1)/sqrt5) is

    Text Solution

    |

  13. The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x ...

    Text Solution

    |

  14. If alpha, beta and gamma are the three angles with alpha = 2tan^(-1)(s...

    Text Solution

    |

  15. If f(x) = cos^(-1)x + cos^(-1){(x)/(2)+(1)/(2)sqrt(3-3x^(2))} then :

    Text Solution

    |

  16. The trigonometric equation sin^(-1)x=2sin^(-1)a has a solution for all...

    Text Solution

    |

  17. If alpha is the only real root of the equation x^(3) + bx^(2) + cx + 1...

    Text Solution

    |

  18. If tan^(-1)(a/x)+tan^(-1)(b/x)+tan^(-1)(c /x)+tan^(-1)(d/x)=(pi)/(2) t...

    Text Solution

    |

  19. Let u = cot^(-1) sqrt(cos 2 theta) - tan^(-1) sqrt( cos 2 theta) , ...

    Text Solution

    |

  20. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that: xsqrt(1-x^2)+ysqrt(1...

    Text Solution

    |