Home
Class 12
MATHS
If cos^(-1)(cos 4)gt3x^(2)-4x then...

If `cos^(-1)(cos 4)gt3x^(2)-4x` then

A

`x in (-oo,(2-sqrt(6pi-8))/(3)`

B

`x in ((2+sqrt(6pi-87))/(3),oo)`

C

`x in ((2+sqrt(6pi-8))/(3),oo)`

D

`x in ((2-sqrt(p6pi-8))/(3),(2+sqrt(6pi-8))/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \cos^{-1}(\cos 4) > 3x^2 - 4x \), we will follow these steps: ### Step 1: Simplify \( \cos^{-1}(\cos 4) \) The function \( \cos^{-1}(\cos \theta) \) returns \( \theta \) if \( \theta \) is in the range \( [0, \pi] \). Since \( 4 \) is not in this range, we need to find an equivalent angle within \( [0, \pi] \). The angle \( 4 \) can be expressed as: \[ 4 = 2\pi - (2\pi - 4) \] Since \( 2\pi - 4 \) is in the range \( [0, \pi] \), we have: \[ \cos^{-1}(\cos 4) = 2\pi - 4 \] ### Step 2: Rewrite the inequality Now we can rewrite the original inequality: \[ 2\pi - 4 > 3x^2 - 4x \] ### Step 3: Rearrange the inequality Rearranging gives us: \[ 3x^2 - 4x < 2\pi - 4 \] ### Step 4: Set up the quadratic inequality We can express this as: \[ 3x^2 - 4x - (2\pi - 4) < 0 \] ### Step 5: Solve the quadratic equation To find the roots of the equation \( 3x^2 - 4x - (2\pi - 4) = 0 \), we will use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 3 \), \( b = -4 \), and \( c = -(2\pi - 4) \). Calculating the discriminant: \[ D = (-4)^2 - 4 \cdot 3 \cdot (-(2\pi - 4)) = 16 + 12(2\pi - 4) = 16 + 24\pi - 48 = 24\pi - 32 \] Now substituting back into the quadratic formula: \[ x = \frac{4 \pm \sqrt{24\pi - 32}}{6} \] ### Step 6: Find the critical points The critical points are: \[ x_1 = \frac{4 + \sqrt{24\pi - 32}}{6}, \quad x_2 = \frac{4 - \sqrt{24\pi - 32}}{6} \] ### Step 7: Determine the intervals The quadratic \( 3x^2 - 4x - (2\pi - 4) \) opens upwards (since \( a > 0 \)), so it will be less than zero between its roots \( x_2 \) and \( x_1 \). ### Final Result Thus, the solution to the inequality \( \cos^{-1}(\cos 4) > 3x^2 - 4x \) is: \[ x_2 < x < x_1 \]

To solve the inequality \( \cos^{-1}(\cos 4) > 3x^2 - 4x \), we will follow these steps: ### Step 1: Simplify \( \cos^{-1}(\cos 4) \) The function \( \cos^{-1}(\cos \theta) \) returns \( \theta \) if \( \theta \) is in the range \( [0, \pi] \). Since \( 4 \) is not in this range, we need to find an equivalent angle within \( [0, \pi] \). The angle \( 4 \) can be expressed as: \[ ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|72 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

The complete solution set of the inequality cos^(-1)(cos 4) gt 3x^(2) - 4x is

Solve cos^(-1) (cos x) gt sin^(-1) (sin x), x in [0, 2pi]

If cos^(-1)x gt sin^(-1) x , then

Define y=cos^(-1)(4x^(3)-3x) in terms of cos^(-1)x

If cos^(- 1)x-cos^(- 1)(y/2)=alpha then 4x^2-4xycosalpha+y^2=

If f(x)=cos^(-1)(4x^(3)-3x), x in [-1,1] , then

The expression 4cos^(4)x-2cos2x-(1)/(2)cos4x when simplified reduces to :

If y=cos^(-1)(2x)+2cos^(-1)sqrt(1-4x^2) ,x is [-1/2,0] , find (dy)/(dx)

If y=cos^(-1)(2x)+2cos^(-1)sqrt(1-4x^2),\ \ \ x \ \ is \ [0,1/2] , find (dy)/(dx) .

Prove that: 3cos^(-1)x=cos^(-1)(4x^3-3x), x in [1/2,1]

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Section I - Solved Mcqs
  1. Number of triplets (x, y, z) satisfying sin^(-1)x+cos^(-1)y+sin^(-1)z=...

    Text Solution

    |

  2. The complete set of values of x satisfying the inequality sin^(-1)(si...

    Text Solution

    |

  3. If cos^(-1)(cos 4)gt3x^(2)-4x then

    Text Solution

    |

  4. The number of real solutions (x, y), where |y|= sin x , y= cos^(-1)(c...

    Text Solution

    |

  5. If u=cot^(-1)sqrt(cos theta) -tan^(-1)sqrt(cos theta) then sin u=

    Text Solution

    |

  6. A value of x satisfying tan(sec^(-1)x)=sin(cos^(-1).(1)/sqrt5) is

    Text Solution

    |

  7. The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x ...

    Text Solution

    |

  8. If alpha, beta and gamma are the three angles with alpha = 2tan^(-1)(s...

    Text Solution

    |

  9. If f(x) = cos^(-1)x + cos^(-1){(x)/(2)+(1)/(2)sqrt(3-3x^(2))} then :

    Text Solution

    |

  10. The trigonometric equation sin^(-1)x=2sin^(-1)a has a solution for all...

    Text Solution

    |

  11. If alpha is the only real root of the equation x^(3) + bx^(2) + cx + 1...

    Text Solution

    |

  12. If tan^(-1)(a/x)+tan^(-1)(b/x)+tan^(-1)(c /x)+tan^(-1)(d/x)=(pi)/(2) t...

    Text Solution

    |

  13. Let u = cot^(-1) sqrt(cos 2 theta) - tan^(-1) sqrt( cos 2 theta) , ...

    Text Solution

    |

  14. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that: xsqrt(1-x^2)+ysqrt(1...

    Text Solution

    |

  15. If cos^(-1) sqrtp + cos^(-1) sqrt(1 -p) + cos^(-1) sqrt(1 - q) = (3pi)...

    Text Solution

    |

  16. The solution set of the equation sin^(-1)x=2 tan^(-1)x is

    Text Solution

    |

  17. If cot(cos^(-1)x)=sec{tan^(-1)((a)/sqrt(b^(2)-a^(2)))} then x equals

    Text Solution

    |

  18. tan^(-1)[(C(1)x-y)/(c(1)y+x)]+tan^(-1)[(C(2)-C(1))/(1+C(1)C(2))]..+tan...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. Sigma(r=1)^(infty) tan^(-1)(1)/(2r^(2))=t then tan t is equal to

    Text Solution

    |