Home
Class 12
MATHS
If u=cot^(-1)sqrt(cos theta) -tan^(-1)sq...

If `u=cot^(-1)sqrt(cos theta) -tan^(-1)sqrt(cos theta)` then sin u=

A

`sin^(2) theta`

B

`cos^(2) theta`

C

`tan^(2) theta `

D

`tan^(2) 2theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( \sin u \) where \( u = \cot^{-1}(\sqrt{\cos \theta}) - \tan^{-1}(\sqrt{\cos \theta}) \). ### Step-by-Step Solution: 1. **Express \( u \) using the identity**: We know that: \[ \tan^{-1}(x) + \cot^{-1}(x) = \frac{\pi}{2} \] Therefore, we can express \( \cot^{-1}(\sqrt{\cos \theta}) \) as: \[ \cot^{-1}(\sqrt{\cos \theta}) = \frac{\pi}{2} - \tan^{-1}(\sqrt{\cos \theta}) \] Substituting this into the expression for \( u \): \[ u = \left(\frac{\pi}{2} - \tan^{-1}(\sqrt{\cos \theta})\right) - \tan^{-1}(\sqrt{\cos \theta}) \] Simplifying this gives: \[ u = \frac{\pi}{2} - 2\tan^{-1}(\sqrt{\cos \theta}) \] 2. **Find \( \sin u \)**: Using the sine of a difference formula: \[ \sin u = \sin\left(\frac{\pi}{2} - 2\tan^{-1}(\sqrt{\cos \theta})\right) \] This simplifies to: \[ \sin u = \cos(2\tan^{-1}(\sqrt{\cos \theta})) \] 3. **Use the double angle formula for cosine**: The double angle formula for cosine states: \[ \cos(2\alpha) = \frac{1 - \tan^2(\alpha)}{1 + \tan^2(\alpha)} \] Let \( \alpha = \tan^{-1}(\sqrt{\cos \theta}) \). Then: \[ \tan(\alpha) = \sqrt{\cos \theta} \implies \tan^2(\alpha) = \cos \theta \] Substituting this into the double angle formula: \[ \cos(2\tan^{-1}(\sqrt{\cos \theta})) = \frac{1 - \cos \theta}{1 + \cos \theta} \] 4. **Substitute back to find \( \sin u \)**: Thus, we have: \[ \sin u = \frac{1 - \cos \theta}{1 + \cos \theta} \] 5. **Use half-angle identities**: We know that: \[ 1 - \cos \theta = 2 \sin^2\left(\frac{\theta}{2}\right) \] and \[ 1 + \cos \theta = 2 \cos^2\left(\frac{\theta}{2}\right) \] Therefore: \[ \sin u = \frac{2 \sin^2\left(\frac{\theta}{2}\right)}{2 \cos^2\left(\frac{\theta}{2}\right)} = \tan^2\left(\frac{\theta}{2}\right) \] ### Final Answer: \[ \sin u = \tan^2\left(\frac{\theta}{2}\right) \]

To solve the problem, we need to find \( \sin u \) where \( u = \cot^{-1}(\sqrt{\cos \theta}) - \tan^{-1}(\sqrt{\cos \theta}) \). ### Step-by-Step Solution: 1. **Express \( u \) using the identity**: We know that: \[ \tan^{-1}(x) + \cot^{-1}(x) = \frac{\pi}{2} ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|72 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

Let u = cot^(-1) sqrt(cos 2 theta) - tan^(-1) sqrt( cos 2 theta) , then the value of sin u is

If u= cot ^(-1) (sqrt(cos 2 theta)) -tan ^(-1)(sqrt(cos 2 theta)) , then prove that : sin u = tan^(2) theta .

If u=cot^(-1)sqrt(tanalpha)-tan^(-1)sqrt(tanalpha),t h e n tan(pi/4- u/2) is (a) sqrt(tanalpha) (b) sqrt(cotalpha) (c) tanalpha (d) cot alpha

If u=cot^-1 sqrt(tanalpha)-tan^-1 sqrt(tan alpha), then tan(pi/4-u/2) is equal to (a) sqrt(tan alpha) (b) sqrt(cos alpha) (c) tan alpha (d) cot alpha

If u=cot^-1 sqrt(tanalpha)-tan^-1 sqrt(tan alpha), then tan(pi/4-u/2) is equal to (a) sqrt(tan alpha) (b) sqrt(cos alpha) (c) tan alpha (d) cot alpha

int (d ( cos theta))/(sqrt(1-cos^(2) theta))

"If "f(theta)=tan (sin^(-1)sqrt((2)/(3+cos 2theta)))," then " fi nd f'(theta) and

cos theta=sqrt(1-sin theta)

cos theta=sqrt(1-sin theta)

If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ) , then sin theta + cos theta is equal to

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Section I - Solved Mcqs
  1. If cos^(-1)(cos 4)gt3x^(2)-4x then

    Text Solution

    |

  2. The number of real solutions (x, y), where |y|= sin x , y= cos^(-1)(c...

    Text Solution

    |

  3. If u=cot^(-1)sqrt(cos theta) -tan^(-1)sqrt(cos theta) then sin u=

    Text Solution

    |

  4. A value of x satisfying tan(sec^(-1)x)=sin(cos^(-1).(1)/sqrt5) is

    Text Solution

    |

  5. The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x ...

    Text Solution

    |

  6. If alpha, beta and gamma are the three angles with alpha = 2tan^(-1)(s...

    Text Solution

    |

  7. If f(x) = cos^(-1)x + cos^(-1){(x)/(2)+(1)/(2)sqrt(3-3x^(2))} then :

    Text Solution

    |

  8. The trigonometric equation sin^(-1)x=2sin^(-1)a has a solution for all...

    Text Solution

    |

  9. If alpha is the only real root of the equation x^(3) + bx^(2) + cx + 1...

    Text Solution

    |

  10. If tan^(-1)(a/x)+tan^(-1)(b/x)+tan^(-1)(c /x)+tan^(-1)(d/x)=(pi)/(2) t...

    Text Solution

    |

  11. Let u = cot^(-1) sqrt(cos 2 theta) - tan^(-1) sqrt( cos 2 theta) , ...

    Text Solution

    |

  12. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that: xsqrt(1-x^2)+ysqrt(1...

    Text Solution

    |

  13. If cos^(-1) sqrtp + cos^(-1) sqrt(1 -p) + cos^(-1) sqrt(1 - q) = (3pi)...

    Text Solution

    |

  14. The solution set of the equation sin^(-1)x=2 tan^(-1)x is

    Text Solution

    |

  15. If cot(cos^(-1)x)=sec{tan^(-1)((a)/sqrt(b^(2)-a^(2)))} then x equals

    Text Solution

    |

  16. tan^(-1)[(C(1)x-y)/(c(1)y+x)]+tan^(-1)[(C(2)-C(1))/(1+C(1)C(2))]..+tan...

    Text Solution

    |

  17. about to only mathematics

    Text Solution

    |

  18. Sigma(r=1)^(infty) tan^(-1)(1)/(2r^(2))=t then tan t is equal to

    Text Solution

    |

  19. Let (x,y)be such that sin^(-1)(ax)+cos^(-1)y+cos^(-1)(bxy)=(pi)/(2) ...

    Text Solution

    |

  20. Let f:[0,4pi]->[0,pi] be defined by f(x)=cos^-1(cos x). The number ...

    Text Solution

    |