Home
Class 12
MATHS
tan^(-1)[(C(1)x-y)/(c(1)y+x)]+tan^(-1)[(...

`tan^(-1)[(C_(1)x-y)/(c_(1)y+x)]+tan^(-1)[(C_(2)-C_(1))/(1+C_(1)C_(2))]..+tan^(-1)[(1)/(c_(n))]` is equal to

A

`tan^(-1)(y)/(x)`

B

`tan^(-1)(x/y)`

C

`-tan^(-1)(x)/(y)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ \tan^{-1}\left(\frac{C_{1}x - y}{C_{1}y + x}\right) + \tan^{-1}\left(\frac{C_{2} - C_{1}}{1 + C_{1}C_{2}}\right) + \ldots + \tan^{-1\left(\frac{1}{C_{n}}\right)} \] ### Step-by-Step Solution: 1. **Identify the First Term:** The first term is: \[ \tan^{-1}\left(\frac{C_{1}x - y}{C_{1}y + x}\right) \] 2. **Rewrite the First Term:** We can express this in a different form: \[ \tan^{-1}\left(\frac{C_{1}x - y}{C_{1}y + x}\right) = \tan^{-1}\left(\frac{C_{1}x}{C_{1}y + x} - \frac{y}{C_{1}y + x}\right) \] This can be simplified further using the identity for the difference of two angles. 3. **Use the Tangent Addition Formula:** We know that: \[ \tan^{-1}(A) + \tan^{-1}(B) = \tan^{-1}\left(\frac{A + B}{1 - AB}\right) \] We can apply this formula to the first term and the subsequent terms. 4. **Evaluate the Subsequent Terms:** The second term is: \[ \tan^{-1}\left(\frac{C_{2} - C_{1}}{1 + C_{1}C_{2}}\right) \] This can be rewritten as: \[ \tan^{-1}\left(\tan(\theta_2)\right) \text{ where } \theta_2 = \tan^{-1}(C_{2}) - \tan^{-1}(C_{1}) \] 5. **Continue the Pattern:** Continuing this process for all terms, we notice a pattern where each term cancels with the previous one: \[ \tan^{-1}(C_{k}) - \tan^{-1}(C_{k-1}) \text{ for } k = 1, 2, \ldots, n \] 6. **Final Simplification:** After all cancellations, we are left with: \[ \tan^{-1}\left(\frac{x}{y}\right) \] 7. **Conclusion:** Therefore, the entire expression simplifies to: \[ \tan^{-1}\left(\frac{x}{y}\right) \] ### Final Answer: The final result is: \[ \tan^{-1}\left(\frac{x}{y}\right) \]

To solve the given problem, we need to evaluate the expression: \[ \tan^{-1}\left(\frac{C_{1}x - y}{C_{1}y + x}\right) + \tan^{-1}\left(\frac{C_{2} - C_{1}}{1 + C_{1}C_{2}}\right) + \ldots + \tan^{-1\left(\frac{1}{C_{n}}\right)} \] ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|11 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|72 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

If c_i >0 for i=1,\ 2,\ ,\ n , prove that tan^(-1)((c_1x-y)/(c_1y+x))+tan^(-1)((c_2-c_1)/(1+c_2c_1))+tan^(-1)((c_3-c_2)/(1+c_3c_2))+\ dot+ tan^(-1)(1/(c_n)) = tan^(-1)(x/y)

If c_i >0 for i=1,2,....., n prove that tan^(-1)((c_1x-y)/(c_1y+x))+tan^(-1)((c_2-c_1)/(1+c_2c_1))+tan^(-1)((c_3-c_2)/(1+c_3c_2))+.........+ tan^(-1)(1/(c_n))=tan^(-1)(x/y)

If (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r),(1 + (C_(0))/(C_(1))) (1 + (C_(2))/(C_(1)))...(1 + (C_(n))/(C_(n-1))) is equal to

If a,b,c are real positive numbers and theta =tan^(-1)[(a(a+b+c))/(bc)]^(1/2)+tan^(-1)[(b(a+b+c))/(ca)]^(1/2)+tan^(-1)[(c(a+b+c))/(ab)]^(1/2) , then tantheta equals

If int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))=klog|tan^(-1)""(x^(2)+1)/x|+c , then k is equal to

Prove that : tan^(-1)((x-y)/(1+xy)) + tan^(-1)((y-z)/(1+yz)) + tan^(-1)( (z-x)/(1+zx)) = tan^(-1)((x^2-y^2)/(1+x^2y^2))+tan^(-1)((y^2-z^2)/(1+y^2z^2))+tan^(-1)((z^2-x^2)/(1+z^2x^2))

tan^(- 1) (1/(x+y)) +tan^(- 1) (y/(x^2+x y+1)) =cot^(- 1)x

Prove that tan^(-1)((a-b)/(1+ab))+ tan^(-1)((b-c)/(1+bc))+tan^(-1)((c-a)/(1+ca))=0 , ab>(-1), bc>(-1), ca>(-1)

int(x^2+2)/(x^4+4)dx is equal to (a) 1/2tan^(-1)((x^2-2)/(2x))+c (b) 1/2tan^(-1)((2x)/(x^2+2))+c (c) 1/2tan^(-1)((2x)/(x^2-2))+c (d) 1/2tan^(-1)(x^2+2)+c

The order of the differential equation of family of curver y=C_(1)sin^(-1)x+C_(2)cos^(-1)x+C^(3)tan^(-1)x+C^(4)cot^(-1)x (where C_(1),C_(2),C_(3) and C_(4) are arbitrary constants) is

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Section I - Solved Mcqs
  1. A value of x satisfying tan(sec^(-1)x)=sin(cos^(-1).(1)/sqrt5) is

    Text Solution

    |

  2. The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x ...

    Text Solution

    |

  3. If alpha, beta and gamma are the three angles with alpha = 2tan^(-1)(s...

    Text Solution

    |

  4. If f(x) = cos^(-1)x + cos^(-1){(x)/(2)+(1)/(2)sqrt(3-3x^(2))} then :

    Text Solution

    |

  5. The trigonometric equation sin^(-1)x=2sin^(-1)a has a solution for all...

    Text Solution

    |

  6. If alpha is the only real root of the equation x^(3) + bx^(2) + cx + 1...

    Text Solution

    |

  7. If tan^(-1)(a/x)+tan^(-1)(b/x)+tan^(-1)(c /x)+tan^(-1)(d/x)=(pi)/(2) t...

    Text Solution

    |

  8. Let u = cot^(-1) sqrt(cos 2 theta) - tan^(-1) sqrt( cos 2 theta) , ...

    Text Solution

    |

  9. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that: xsqrt(1-x^2)+ysqrt(1...

    Text Solution

    |

  10. If cos^(-1) sqrtp + cos^(-1) sqrt(1 -p) + cos^(-1) sqrt(1 - q) = (3pi)...

    Text Solution

    |

  11. The solution set of the equation sin^(-1)x=2 tan^(-1)x is

    Text Solution

    |

  12. If cot(cos^(-1)x)=sec{tan^(-1)((a)/sqrt(b^(2)-a^(2)))} then x equals

    Text Solution

    |

  13. tan^(-1)[(C(1)x-y)/(c(1)y+x)]+tan^(-1)[(C(2)-C(1))/(1+C(1)C(2))]..+tan...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. Sigma(r=1)^(infty) tan^(-1)(1)/(2r^(2))=t then tan t is equal to

    Text Solution

    |

  16. Let (x,y)be such that sin^(-1)(ax)+cos^(-1)y+cos^(-1)(bxy)=(pi)/(2) ...

    Text Solution

    |

  17. Let f:[0,4pi]->[0,pi] be defined by f(x)=cos^-1(cos x). The number ...

    Text Solution

    |

  18. If (sin^(-1)x+sin^(-1)y)(sin^(-1)Z+sin^(-1)w)=pi^(2) and n(1),n(2),n(3...

    Text Solution

    |

  19. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^...

    Text Solution

    |

  20. Let tan^(-1) y = tan^(-1) x + tan^(-1) ((2x)/(1 -x^(2))), " where " |x...

    Text Solution

    |