Home
Class 12
MATHS
If a,b are positive quantitis and if a(1...

If a,b are positive quantitis and if `a_(1)=(a+b)/(2), b_(1)=sqrt(a_(1)b) , a_(2)=(a_(1)+b_(1))/(2), b_(2)=sqrt(a_(2)b_(1))` and so on then

A

`a_(oo)=sqrt(b^(2)-a^(2))/(cos^(-1)(a/b))`

B

`b_(oo)=sqrt(b^(2)-a^(2))/(cos^(-1)(a/b))`

C

`b_(oo)=sqrt(a^(2)+b^(2))/(cos^(-1)(b/a))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given sequences \( a_n \) and \( b_n \) defined as follows: 1. **Definitions**: - \( a_1 = \frac{a + b}{2} \) - \( b_1 = \sqrt{a_1 b} \) - \( a_2 = \frac{a_1 + b_1}{2} \) - \( b_2 = \sqrt{a_2 b_1} \) - And so on... 2. **Assumption**: - Let \( a = b \cos \theta \) for some angle \( \theta \). 3. **Calculate \( a_1 \)**: \[ a_1 = \frac{a + b}{2} = \frac{b \cos \theta + b}{2} = \frac{b(1 + \cos \theta)}{2} \] 4. **Using the identity for cosine**: We know that: \[ \cos \theta = 2 \cos^2 \left(\frac{\theta}{2}\right) - 1 \implies \cos^2 \left(\frac{\theta}{2}\right) = \frac{1 + \cos \theta}{2} \] Therefore: \[ a_1 = b \cos^2 \left(\frac{\theta}{2}\right) \] 5. **Calculate \( b_1 \)**: \[ b_1 = \sqrt{a_1 b} = \sqrt{b \cos^2 \left(\frac{\theta}{2}\right) \cdot b} = b \cos \left(\frac{\theta}{2}\right) \] 6. **Calculate \( a_2 \)**: \[ a_2 = \frac{a_1 + b_1}{2} = \frac{b \cos^2 \left(\frac{\theta}{2}\right) + b \cos \left(\frac{\theta}{2}\right)}{2} = \frac{b \left(\cos^2 \left(\frac{\theta}{2}\right) + \cos \left(\frac{\theta}{2}\right)\right)}{2} \] Factoring out \( b \): \[ a_2 = b \cdot \frac{\cos^2 \left(\frac{\theta}{2}\right) + \cos \left(\frac{\theta}{2}\right)}{2} \] 7. **Using the identity again**: \[ 1 + \cos \left(\frac{\theta}{2}\right) = 2 \cos^2 \left(\frac{\theta}{4}\right) \implies a_2 = b \cdot \frac{2 \cos^2 \left(\frac{\theta}{4}\right)}{2} = b \cos^2 \left(\frac{\theta}{4}\right) \] 8. **Calculate \( b_2 \)**: \[ b_2 = \sqrt{a_2 b_1} = \sqrt{b \cos^2 \left(\frac{\theta}{4}\right) \cdot b \cos \left(\frac{\theta}{2}\right)} = b \cos \left(\frac{\theta}{4}\right) \cos \left(\frac{\theta}{2}\right) \] 9. **Continuing this pattern**: - We can see that: \[ a_n = b \cos^2 \left(\frac{\theta}{2^{n-1}}\right) \] \[ b_n = b \prod_{k=1}^{n-1} \cos \left(\frac{\theta}{2^k}\right) \] 10. **Finding the limit as \( n \to \infty \)**: - As \( n \to \infty \), \( \cos \left(\frac{\theta}{2^n}\right) \to 1 \). - Therefore: \[ b_n \to b \cdot \prod_{k=1}^{\infty} \cos \left(\frac{\theta}{2^k}\right) \] 11. **Using the sine identity**: \[ \prod_{k=1}^{\infty} \cos \left(\frac{\theta}{2^k}\right) = \frac{\sin \theta}{\theta} \] 12. **Final result**: \[ b_\infty = b \cdot \frac{\sin \theta}{\theta} \] 13. **Expressing \( \theta \)**: - Since \( \theta = \cos^{-1} \left(\frac{a}{b}\right) \), we can express \( b_\infty \) in terms of \( a \) and \( b \): \[ b_\infty = b \cdot \frac{\sqrt{b^2 - a^2}}{b} = \sqrt{b^2 - a^2} \] Thus, the final answer is: \[ b_\infty = \frac{\sqrt{b^2 - a^2}}{\cos^{-1} \left(\frac{a}{b}\right)} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|72 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

If a_(n) and b_(n) are positive integers and a_(n)+sqrt2b_(n)=(2+sqrt2))^(n) , then lim_(nrarroo) ((a_(n))/(b_(n))) =

If a_(1) and a_(2) are two non- collinear unit vectors and if |a_(1)+a_(2)|=sqrt(3), ,then value of (a_(1)-a_(2)).(2a_(1)-a_(2)) is

If 4a^(2)+9b^(2)+16c^(2)=2(3ab+6bc+4ca) , where a,b,c are non-zero real numbers, then a,b,c are in GP. Statement 2 If (a_(1)-a_(2))^(2)+(a_(2)-a_(3))^(2)+(a_(3)-a_(1))^(2)=0 , then a_(1)=a_(2)=a_(3),AA a_(1),a_(2),a_(3) in R .

If a_(1) and a_(2) aare two non- collineaar unit vectors and if |a_(1)+a_(2)|=sqrt(3), ,then value of (a_(1)-a_(2)).(2a_(1)-a_(2)) is

The value of the determinant Delta = |(1 + a_(1) b_(1),1 + a_(1) b_(2),1 + a_(1) b_(3)),(1 + a_(2) b_(1),1 + a_(2) b_(2),1 + a_(2) b_(3)),(1 + a_(3) b_(1) ,1 + a_(3) b_(2),1 + a_(3) b_(3))| , is

If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=|{:(a_(1),b_(1),1),(a_(2),b_(2),1),(a_(3),b_(3),1):}| , then the two triangles with vertices (x_(1),y_(1)) , (x_(2),y_(2)) , (x_(3),y_(3)) and (a_(1),b_(1)) , (a_(2),b_(2)) , (a_(3),b_(3)) must be congruent.

If a_(1) x^(3) + b_(1)x^(2) + c_(1)x + d_(1) = 0 and a_(2)x^(3) + b_(2)x^(2) + c_(2)x + d_(2) = 0 a pair of repeated roots common, then prove that |{:(3a_(1)", "2b_(1) ", "c_(1)),(3a_(2)", " 2b_(2)", "c_(2)),(a_(2)""b_(1)- a_(1)b_(2)", "c_(2)a_(1)-c_(2)a_(1)", "d_(1)a_(2)-d_(2)a_(1)):}|=0

If a and b are distinct positive real numbers such that a, a_(1), a_(2), a_(3), a_(4), a_(5), b are in A.P. , a, b_(1), b_(2), b_(3), b_(4), b_(5), b are in G.P. and a, c_(1), c_(2), c_(3), c_(4), c_(5), b are in H.P., then the roots of a_(3)x^(2)+b_(3)x+c_(3)=0 are

If the points (a_(1),b_(1))m(a_(2),b_(2))" and " (a_(1)-a_(2),b_(2)-b_(2)) are collinear, then prove that a_(1)/a_(2)=b_(1)/b_(2)

the value of the determinant |{:((a_(1)-b_(1))^(2),,(a_(1)-b_(2))^(2),,(a_(1)-b_(3))^(2),,(a_(1)-b_(4))^(2)),((a_(2)-b_(1))^(2),,(a_(2)-b_(2))^(2) ,,(a_(2)-b_(3))^(2),,(a_(2)-b_(4))^(2)),((a_(3)-b_(1))^(2),,(a_(3)-b_(2))^(2),,(a_(3)-b_(3))^(2),,(a_(3)-b_(4))^(2)),((a_(4)-b_(1))^(2),,(a_(4)-b_(2))^(2),,(a_(4)-b_(3))^(2),,(a_(4)-b_(4))^(2)):}| is

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Chapter Test
  1. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2) the value of x^(100)+y^(10...

    Text Solution

    |

  2. The value of (alpha^(3))/(2) cosec^(2) ((1)/(2) tan^(-1) ((alpha)/(bet...

    Text Solution

    |

  3. If a,b are positive quantitis and if a(1)=(a+b)/(2), b(1)=sqrt(a(1)b) ...

    Text Solution

    |

  4. tan""(2pi)/(5)-tan""(pi)/(15)-sqrt3tan""(2pi)/(5)tan""(pi)/(15) is equ...

    Text Solution

    |

  5. If a(1), a(2), a(3),...., a(n) is an A.P. with common difference d, th...

    Text Solution

    |

  6. If x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3)) , then -

    Text Solution

    |

  7. Which of the following angles is greater? theta1=sin^(-1)+sin^(-1)1/3o...

    Text Solution

    |

  8. The value of cos[1/2 cos^(-1){cos(sin^(-1)((sqrt63)/(8)))}] is

    Text Solution

    |

  9. Solve for x: - tan^(-1)("x"+1)+tan^(-1)("x"-1)=tan^(-1) (8/31)

    Text Solution

    |

  10. If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)...

    Text Solution

    |

  11. The sum of the two angles cot^(-1) 3 and cosec^(-1) sqrt(5) is

    Text Solution

    |

  12. Show that: cos(2tan^(-1)1/7)=sin(4^(-1)1/3)

    Text Solution

    |

  13. The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x ...

    Text Solution

    |

  14. cos{cos^(-1)(-1/7)+sin^(-1)(-1/7)} =

    Text Solution

    |

  15. If cos^(-1)x + cos^(-1)y + cos^(-1)z = 3pi, then xy + yz +zx is equal ...

    Text Solution

    |

  16. Evaluate: sin(1/2cos^(-1)4/5)

    Text Solution

    |

  17. If xge0 and theta=sin^(-1)x+cos^(-1)x-tan^(-1)x, then

    Text Solution

    |

  18. If tan^(-1)a+tan^(-1)b+tan^(-1)c=pi then prove tjhat a+b+c=abc

    Text Solution

    |

  19. The value of cot("cosec"^(-1)(5)/(3)+"tan"^(-1)(2)/(3)) is :

    Text Solution

    |

  20. Prove the following : sin^(-1)(4/5)+2\ tan^(-1)(1/3)=pi/2

    Text Solution

    |