Home
Class 12
MATHS
tan""(2pi)/(5)-tan""(pi)/(15)-sqrt3tan""...

`tan""(2pi)/(5)-tan""(pi)/(15)-sqrt3tan""(2pi)/(5)tan""(pi)/(15)` is equal to

A

`-sqrt(3)`

B

`(1)/sqrt(3)`

C

1

D

`sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan\left(\frac{2\pi}{5}\right) - \tan\left(\frac{\pi}{15}\right) - \sqrt{3} \tan\left(\frac{2\pi}{5}\right) \tan\left(\frac{\pi}{15}\right) \), we can follow these steps: ### Step 1: Simplify the angles First, we need to simplify the angles involved. We can find a common angle for the tangent function. We know: \[ \frac{2\pi}{5} - \frac{\pi}{15} \] To simplify this, we need a common denominator. The least common multiple of 5 and 15 is 15. Thus, we convert: \[ \frac{2\pi}{5} = \frac{6\pi}{15} \] So, \[ \frac{2\pi}{5} - \frac{\pi}{15} = \frac{6\pi}{15} - \frac{\pi}{15} = \frac{5\pi}{15} = \frac{\pi}{3} \] ### Step 2: Use the tangent subtraction formula Now we can use the tangent subtraction formula: \[ \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \] Let \( A = \frac{2\pi}{5} \) and \( B = \frac{\pi}{15} \). Then we have: \[ \tan\left(\frac{2\pi}{5} - \frac{\pi}{15}\right) = \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \] ### Step 3: Set up the equation From the tangent subtraction formula, we can set up the equation: \[ \tan\left(\frac{2\pi}{5}\right) - \tan\left(\frac{\pi}{15}\right) = \sqrt{3} \left(1 + \tan\left(\frac{2\pi}{5}\right) \tan\left(\frac{\pi}{15}\right)\right) \] ### Step 4: Rearranging the equation Rearranging gives us: \[ \tan\left(\frac{2\pi}{5}\right) - \tan\left(\frac{\pi}{15}\right) - \sqrt{3} \tan\left(\frac{2\pi}{5}\right) \tan\left(\frac{\pi}{15}\right) = \sqrt{3} \] ### Step 5: Conclusion Thus, we can conclude that: \[ \tan\left(\frac{2\pi}{5}\right) - \tan\left(\frac{\pi}{15}\right) - \sqrt{3} \tan\left(\frac{2\pi}{5}\right) \tan\left(\frac{\pi}{15}\right) = \sqrt{3} \] Therefore, the final answer is: \[ \sqrt{3} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|72 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

Evaluate : "tan"(2pi)/(9)+"tan"(pi)/(9) + sqrt(3) "tan"(2pi)/(9) "tan"(pi)/(9)

Evaluate : tan ""(pi )/(12) .tan ""( pi )/(16) .tan ""(5pi )/(12) .tan ""( 7pi )/(16)

The value of the expression tan. (pi)/(7)+ 2 tan. (2pi)/(7)+ 4 tan . (4pi)/(7)+ 8 cot. (8pi)/(7) is equal to

The numerical value of tan(pi/3)+2tan((2pi)/3)+4tan((4pi)/3)+8tan((8pi)/3) is equal to (A) -5sqrt(3) (B) -5/(sqrt3) (C) 5sqrt(3) (D) 5/(sqrt3)

The absolute value of the expression tan(pi/(16))+tan((5pi)/(16))+tan((9pi)/(16))+tan((13pi)/(16)) is ______

If (3-tan^(2)""(pi)/(7))/(1-tan^(2)""(pi)/(7))=kcos""(pi)/(7) then the value of k is

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

The value of 4 cos(pi/10)-3 sec(pi/10)- 2 tan(pi/10) is equal to

tan^6(pi/9)-33tan^4(pi/9)+27tan^2(pi/9) is equal to (a)0 (b) sqrt3 (c) 3(d)9

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Chapter Test
  1. The value of (alpha^(3))/(2) cosec^(2) ((1)/(2) tan^(-1) ((alpha)/(bet...

    Text Solution

    |

  2. If a,b are positive quantitis and if a(1)=(a+b)/(2), b(1)=sqrt(a(1)b) ...

    Text Solution

    |

  3. tan""(2pi)/(5)-tan""(pi)/(15)-sqrt3tan""(2pi)/(5)tan""(pi)/(15) is equ...

    Text Solution

    |

  4. If a(1), a(2), a(3),...., a(n) is an A.P. with common difference d, th...

    Text Solution

    |

  5. If x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3)) , then -

    Text Solution

    |

  6. Which of the following angles is greater? theta1=sin^(-1)+sin^(-1)1/3o...

    Text Solution

    |

  7. The value of cos[1/2 cos^(-1){cos(sin^(-1)((sqrt63)/(8)))}] is

    Text Solution

    |

  8. Solve for x: - tan^(-1)("x"+1)+tan^(-1)("x"-1)=tan^(-1) (8/31)

    Text Solution

    |

  9. If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)...

    Text Solution

    |

  10. The sum of the two angles cot^(-1) 3 and cosec^(-1) sqrt(5) is

    Text Solution

    |

  11. Show that: cos(2tan^(-1)1/7)=sin(4^(-1)1/3)

    Text Solution

    |

  12. The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x ...

    Text Solution

    |

  13. cos{cos^(-1)(-1/7)+sin^(-1)(-1/7)} =

    Text Solution

    |

  14. If cos^(-1)x + cos^(-1)y + cos^(-1)z = 3pi, then xy + yz +zx is equal ...

    Text Solution

    |

  15. Evaluate: sin(1/2cos^(-1)4/5)

    Text Solution

    |

  16. If xge0 and theta=sin^(-1)x+cos^(-1)x-tan^(-1)x, then

    Text Solution

    |

  17. If tan^(-1)a+tan^(-1)b+tan^(-1)c=pi then prove tjhat a+b+c=abc

    Text Solution

    |

  18. The value of cot("cosec"^(-1)(5)/(3)+"tan"^(-1)(2)/(3)) is :

    Text Solution

    |

  19. Prove the following : sin^(-1)(4/5)+2\ tan^(-1)(1/3)=pi/2

    Text Solution

    |

  20. The equation sin^-1x-cos^-1x=cos^-1(sqrt3/2) has

    Text Solution

    |