Home
Class 12
MATHS
If x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1...

If `x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3))` , then -

A

`x=y^(2)`

B

`y^(2)=1-x`

C

`x^(2)=(y)/(2)`

D

`y^(2)=1+x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will calculate the values of \( x \) and \( y \) as defined in the question. ### Step 1: Calculate \( x = \sin(2 \tan^{-1}(2)) \) We can use the double angle formula for sine: \[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \] Let \( \theta = \tan^{-1}(2) \). Then, we have: \[ \tan(\theta) = 2 \implies \frac{\text{opposite}}{\text{adjacent}} = \frac{2}{1} \] Using the Pythagorean theorem, we find the hypotenuse: \[ \text{hypotenuse} = \sqrt{2^2 + 1^2} = \sqrt{5} \] Now, we can find \( \sin(\theta) \) and \( \cos(\theta) \): \[ \sin(\theta) = \frac{2}{\sqrt{5}}, \quad \cos(\theta) = \frac{1}{\sqrt{5}} \] Now substituting back into the sine double angle formula: \[ x = \sin(2 \tan^{-1}(2)) = 2 \sin(\theta) \cos(\theta) = 2 \left(\frac{2}{\sqrt{5}}\right) \left(\frac{1}{\sqrt{5}}\right) = \frac{4}{5} \] ### Step 2: Calculate \( y = \sin\left(\frac{1}{2} \tan^{-1}\left(\frac{4}{3}\right)\right) \) Let \( \phi = \tan^{-1}\left(\frac{4}{3}\right) \). Then, we have: \[ \tan(\phi) = \frac{4}{3} \implies \frac{\text{opposite}}{\text{adjacent}} = \frac{4}{3} \] Using the Pythagorean theorem again: \[ \text{hypotenuse} = \sqrt{4^2 + 3^2} = \sqrt{25} = 5 \] Now we can find \( \sin(\phi) \) and \( \cos(\phi) \): \[ \sin(\phi) = \frac{4}{5}, \quad \cos(\phi) = \frac{3}{5} \] Now we need to find \( \sin\left(\frac{1}{2} \phi\right) \) using the half-angle formula: \[ \sin\left(\frac{\phi}{2}\right) = \sqrt{\frac{1 - \cos(\phi)}{2}} = \sqrt{\frac{1 - \frac{3}{5}}{2}} = \sqrt{\frac{\frac{2}{5}}{2}} = \sqrt{\frac{1}{5}} = \frac{1}{\sqrt{5}} \] Thus, \( y = \frac{1}{\sqrt{5}} \). ### Step 3: Relate \( x \) and \( y \) From the calculations: \[ x = \frac{4}{5}, \quad y = \frac{1}{\sqrt{5}} = \frac{1}{\sqrt{5}} = \frac{1}{\sqrt{5}} = \frac{1}{\sqrt{5}} \] Now, we can square \( y \): \[ y^2 = \left(\frac{1}{\sqrt{5}}\right)^2 = \frac{1}{5} \] Also, we can express \( x \) in terms of \( y \): \[ 1 - x = 1 - \frac{4}{5} = \frac{1}{5} \] Thus, we have: \[ y^2 = 1 - x \] ### Final Conclusion The relationship we derived is: \[ y^2 = 1 - x \] This means that the values of \( x \) and \( y \) are related as required.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|72 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

If x=sin(2tan^(-1)3)and y=sin((1)/(2)tan^(-1)(4/3)) , then

If x=sin(2tan^(-1)2)and y=sin((1)/(2)tan^(-1).(4)/(3)) , then prove that y^2 = 1 - x

sin (tan ^(-1)2x)

sin(2tan^(-1) .(4)/(5))= ?

Show that: cos(2tan^(-1)(1/7))=sin(4tan^(-1)(1/3))

Show that: cos(2tan^-1(1/7))=sin(4tan^-1(1/3))

Solve the following equation for x : "cos"(tan^(-1)x)=sin(cot^(-1)(3/4)) , tan(cos^(-1)x)=sin(cot^(-1)(1/2))

If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

Show that : cos(2\ tan^(-1)(1/7 ))=sin(4\ tan^(-1) (1/3) )

If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))) , then "………"lt y lt "………" .

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Chapter Test
  1. The value of (alpha^(3))/(2) cosec^(2) ((1)/(2) tan^(-1) ((alpha)/(bet...

    Text Solution

    |

  2. If a,b are positive quantitis and if a(1)=(a+b)/(2), b(1)=sqrt(a(1)b) ...

    Text Solution

    |

  3. tan""(2pi)/(5)-tan""(pi)/(15)-sqrt3tan""(2pi)/(5)tan""(pi)/(15) is equ...

    Text Solution

    |

  4. If a(1), a(2), a(3),...., a(n) is an A.P. with common difference d, th...

    Text Solution

    |

  5. If x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3)) , then -

    Text Solution

    |

  6. Which of the following angles is greater? theta1=sin^(-1)+sin^(-1)1/3o...

    Text Solution

    |

  7. The value of cos[1/2 cos^(-1){cos(sin^(-1)((sqrt63)/(8)))}] is

    Text Solution

    |

  8. Solve for x: - tan^(-1)("x"+1)+tan^(-1)("x"-1)=tan^(-1) (8/31)

    Text Solution

    |

  9. If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)...

    Text Solution

    |

  10. The sum of the two angles cot^(-1) 3 and cosec^(-1) sqrt(5) is

    Text Solution

    |

  11. Show that: cos(2tan^(-1)1/7)=sin(4^(-1)1/3)

    Text Solution

    |

  12. The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x ...

    Text Solution

    |

  13. cos{cos^(-1)(-1/7)+sin^(-1)(-1/7)} =

    Text Solution

    |

  14. If cos^(-1)x + cos^(-1)y + cos^(-1)z = 3pi, then xy + yz +zx is equal ...

    Text Solution

    |

  15. Evaluate: sin(1/2cos^(-1)4/5)

    Text Solution

    |

  16. If xge0 and theta=sin^(-1)x+cos^(-1)x-tan^(-1)x, then

    Text Solution

    |

  17. If tan^(-1)a+tan^(-1)b+tan^(-1)c=pi then prove tjhat a+b+c=abc

    Text Solution

    |

  18. The value of cot("cosec"^(-1)(5)/(3)+"tan"^(-1)(2)/(3)) is :

    Text Solution

    |

  19. Prove the following : sin^(-1)(4/5)+2\ tan^(-1)(1/3)=pi/2

    Text Solution

    |

  20. The equation sin^-1x-cos^-1x=cos^-1(sqrt3/2) has

    Text Solution

    |