Home
Class 12
MATHS
If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(...

If `alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)/2)+cos^(-1)(1/3)` then

A

`alpha gt beta`

B

`alpha = beta`

C

`alpha lt beta`

D

`alpha + beta =2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the relationship between \( \alpha \) and \( \beta \) given the definitions of \( \alpha \) and \( \beta \). ### Step 1: Calculate \( \alpha \) We know that: \[ \alpha = \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) + \sin^{-1}\left(\frac{1}{3}\right) \] Using the known values: \[ \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3} \] Thus, we can rewrite \( \alpha \) as: \[ \alpha = \frac{\pi}{3} + \sin^{-1}\left(\frac{1}{3}\right) \] ### Step 2: Calculate \( \beta \) Next, we calculate \( \beta \): \[ \beta = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) + \cos^{-1}\left(\frac{1}{3}\right) \] Using the known values: \[ \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6} \] Thus, we can rewrite \( \beta \) as: \[ \beta = \frac{\pi}{6} + \cos^{-1}\left(\frac{1}{3}\right) \] ### Step 3: Compare \( \alpha \) and \( \beta \) Now we need to compare \( \alpha \) and \( \beta \): \[ \alpha = \frac{\pi}{3} + \sin^{-1}\left(\frac{1}{3}\right) \] \[ \beta = \frac{\pi}{6} + \cos^{-1}\left(\frac{1}{3}\right) \] ### Step 4: Use the identity for \( \sin^{-1} \) and \( \cos^{-1} \) We know that: \[ \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \] Thus, we can express \( \cos^{-1}\left(\frac{1}{3}\right) \) in terms of \( \sin^{-1}\left(\frac{1}{3}\right) \): \[ \cos^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{2} - \sin^{-1}\left(\frac{1}{3}\right) \] ### Step 5: Substitute back into \( \beta \) Substituting this into \( \beta \): \[ \beta = \frac{\pi}{6} + \left(\frac{\pi}{2} - \sin^{-1}\left(\frac{1}{3}\right)\right) \] \[ \beta = \frac{\pi}{6} + \frac{\pi}{2} - \sin^{-1}\left(\frac{1}{3}\right) \] \[ \beta = \frac{\pi}{6} + \frac{3\pi}{6} - \sin^{-1}\left(\frac{1}{3}\right) \] \[ \beta = \frac{4\pi}{6} - \sin^{-1}\left(\frac{1}{3}\right) \] \[ \beta = \frac{2\pi}{3} - \sin^{-1}\left(\frac{1}{3}\right) \] ### Step 6: Compare \( \alpha \) and \( \beta \) Now we have: \[ \alpha = \frac{\pi}{3} + \sin^{-1}\left(\frac{1}{3}\right) \] \[ \beta = \frac{2\pi}{3} - \sin^{-1}\left(\frac{1}{3}\right) \] To compare \( \alpha \) and \( \beta \): \[ \alpha - \beta = \left(\frac{\pi}{3} + \sin^{-1}\left(\frac{1}{3}\right)\right) - \left(\frac{2\pi}{3} - \sin^{-1}\left(\frac{1}{3}\right)\right) \] \[ = \frac{\pi}{3} + \sin^{-1}\left(\frac{1}{3}\right) - \frac{2\pi}{3} + \sin^{-1}\left(\frac{1}{3}\right) \] \[ = -\frac{\pi}{3} + 2\sin^{-1}\left(\frac{1}{3}\right) \] Since \( \sin^{-1}\left(\frac{1}{3}\right) \) is positive, we can conclude that: \[ \alpha > \beta \] ### Conclusion Thus, we have established the relationship: \[ \alpha > \beta \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|72 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

If alpha = sin^(-1) (cos(sin^-1) x)) and beta = cos^(-1) (sin (cos^(-1) x)) , then find tan alpha. tan beta.

1. sin^(-1)((1)/(sqrt(2))) 2. cos^(-1)((sqrt(3))/(2))

Solve sin^(-1) x - cos^(-1) x = cos ^(-1)(sqrt3/2) .

If alpha, beta and gamma are the three angles with alpha = 2tan^(-1)(sqrt2-1); beta = 3sin^(-1)(1/sqrt2)+sin^(-1)(-1/2) and gamma = cos^(-1)(1/3), then

cos("sin"^(-1)(1)/(2)+"cos"^(-1)(1)/(3))=

sin^(-1){cos(sin^(-1)(sqrt(3)/2))}

Find the value of sin^(-1)(sqrt3/2)+cos^(-1)(-1)+tan^(-1)(-1)

Write the value of sin^(-1)(-(sqrt(3))/2)+cos^(-1)(-1/2) .

Let alpha = 3 cos^(-1) (5/sqrt28) + 3 tan^(-1) ( sqrt3/2) " and " beta = 4 sin ^(-1) ((7sqrt2)/10) - 4 tan^(-1) (3/4) , then which of the following does not hold (s) good ?

If alpha, beta and gamma are the three angles with alpha = 2tan^(-1)(sqrt2-1); beta = 3sin^(-1)(1/sqrt2)+sin^(-1)(-1/2) and gamma = cos^(-1)(1/3), find the relation between alpha ,beta and gamma

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Chapter Test
  1. The value of (alpha^(3))/(2) cosec^(2) ((1)/(2) tan^(-1) ((alpha)/(bet...

    Text Solution

    |

  2. If a,b are positive quantitis and if a(1)=(a+b)/(2), b(1)=sqrt(a(1)b) ...

    Text Solution

    |

  3. tan""(2pi)/(5)-tan""(pi)/(15)-sqrt3tan""(2pi)/(5)tan""(pi)/(15) is equ...

    Text Solution

    |

  4. If a(1), a(2), a(3),...., a(n) is an A.P. with common difference d, th...

    Text Solution

    |

  5. If x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3)) , then -

    Text Solution

    |

  6. Which of the following angles is greater? theta1=sin^(-1)+sin^(-1)1/3o...

    Text Solution

    |

  7. The value of cos[1/2 cos^(-1){cos(sin^(-1)((sqrt63)/(8)))}] is

    Text Solution

    |

  8. Solve for x: - tan^(-1)("x"+1)+tan^(-1)("x"-1)=tan^(-1) (8/31)

    Text Solution

    |

  9. If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)...

    Text Solution

    |

  10. The sum of the two angles cot^(-1) 3 and cosec^(-1) sqrt(5) is

    Text Solution

    |

  11. Show that: cos(2tan^(-1)1/7)=sin(4^(-1)1/3)

    Text Solution

    |

  12. The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x ...

    Text Solution

    |

  13. cos{cos^(-1)(-1/7)+sin^(-1)(-1/7)} =

    Text Solution

    |

  14. If cos^(-1)x + cos^(-1)y + cos^(-1)z = 3pi, then xy + yz +zx is equal ...

    Text Solution

    |

  15. Evaluate: sin(1/2cos^(-1)4/5)

    Text Solution

    |

  16. If xge0 and theta=sin^(-1)x+cos^(-1)x-tan^(-1)x, then

    Text Solution

    |

  17. If tan^(-1)a+tan^(-1)b+tan^(-1)c=pi then prove tjhat a+b+c=abc

    Text Solution

    |

  18. The value of cot("cosec"^(-1)(5)/(3)+"tan"^(-1)(2)/(3)) is :

    Text Solution

    |

  19. Prove the following : sin^(-1)(4/5)+2\ tan^(-1)(1/3)=pi/2

    Text Solution

    |

  20. The equation sin^-1x-cos^-1x=cos^-1(sqrt3/2) has

    Text Solution

    |