Home
Class 12
MATHS
The sum of the two angles cot^(-1) 3 and...

The sum of the two angles `cot^(-1) 3 and cosec^(-1) sqrt(5)` is

A

`(pi)/(2)`

B

`(pi)/(3)`

C

`(pi)/(4)`

D

`(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the sum of the two angles \( \cot^{-1}(3) \) and \( \csc^{-1}(\sqrt{5}) \), we will follow these steps: ### Step 1: Define the angles Let: - \( A = \cot^{-1}(3) \) - \( B = \csc^{-1}(\sqrt{5}) \) ### Step 2: Convert \( A \) to \( \tan^{-1} \) Using the identity \( \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \): \[ A = \cot^{-1}(3) = \tan^{-1}\left(\frac{1}{3}\right) \] ### Step 3: Convert \( B \) to a right triangle Since \( B = \csc^{-1}(\sqrt{5}) \), we know that: \[ \csc(B) = \sqrt{5} \implies \sin(B) = \frac{1}{\sqrt{5}} \] Using the Pythagorean theorem, we can find the adjacent side: - Hypotenuse = \( \sqrt{5} \) - Opposite side = 1 (since \( \sin(B) = \frac{1}{\sqrt{5}} \)) Now, using the Pythagorean theorem: \[ \text{Adjacent}^2 + 1^2 = (\sqrt{5})^2 \implies \text{Adjacent}^2 + 1 = 5 \implies \text{Adjacent}^2 = 4 \implies \text{Adjacent} = 2 \] ### Step 4: Find \( \tan(B) \) Now we can find \( \tan(B) \): \[ \tan(B) = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{1}{2} \] Thus, we can write: \[ B = \tan^{-1}\left(\frac{1}{2}\right) \] ### Step 5: Sum of angles Now we need to find \( A + B \): \[ A + B = \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{2}\right) \] ### Step 6: Use the tangent addition formula Using the formula for the sum of two arctangents: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x+y}{1-xy}\right) \] where \( x = \frac{1}{3} \) and \( y = \frac{1}{2} \): \[ A + B = \tan^{-1}\left(\frac{\frac{1}{3} + \frac{1}{2}}{1 - \frac{1}{3} \cdot \frac{1}{2}}\right) \] ### Step 7: Simplify the expression Calculating the numerator: \[ \frac{1}{3} + \frac{1}{2} = \frac{2}{6} + \frac{3}{6} = \frac{5}{6} \] Calculating the denominator: \[ 1 - \frac{1}{3} \cdot \frac{1}{2} = 1 - \frac{1}{6} = \frac{5}{6} \] Thus, \[ A + B = \tan^{-1}\left(\frac{\frac{5}{6}}{\frac{5}{6}}\right) = \tan^{-1}(1) \] ### Step 8: Final result Since \( \tan^{-1}(1) = \frac{\pi}{4} \), we conclude that: \[ A + B = \frac{\pi}{4} \] ### Summary The sum of the angles \( \cot^{-1}(3) \) and \( \csc^{-1}(\sqrt{5}) \) is: \[ \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|72 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

cosec"^(-1)(-sqrt(2))

Prove that cot^(-1) 9 + cosec^(-1) sqrt(41)/4 = pi/4

int cosec^(2)x. sqrt(cot) dx

Find the value of tan^(-1) sqrt3 - cot^(-1) (-sqrt3)

Find the sum cosec^(-1) sqrt10 + cosec^(-1) sqrt50 + cosec^(-1) sqrt(170) + .... + cosec^(-1) sqrt((n^(2) + 1) (n^(2) + 2n + 2))

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]

In Delta ABC , if angle B = sec^(-1)((5)/(4))+cosec^(-1) sqrt(5) , angle C = cosec^(-1)((25)/(7)) + cot^(-1)((9)/(13)) and c = 3 The distance between orthocentre and centroid of triangle with sides a^(2) , b^(4/3) and c is equal to

In Delta ABC , if angle B = sec^(-1)((5)/(4))+cosec^(-1) sqrt(5) , angle C = cosec^(-1)((25)/(7)) + cot^(-1)((9)/(13)) and c = 3 tan A , tan B, tan C are in

For the principal values, evaluate the following: (i) cot^(-1)(-1)+cosec^(-1)(-sqrt(2))+s e c ^(-1)(2) (ii) cot^(-1)(-sqrt(3))+tan^(-1)(1)+sec^(-1)(2/(sqrt(3)))

The vlaue of tan^(-1)sqrt(3)-sec^(-1)(-2)+cosec^(-1)(2)/sqrt(3) is

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Chapter Test
  1. The value of (alpha^(3))/(2) cosec^(2) ((1)/(2) tan^(-1) ((alpha)/(bet...

    Text Solution

    |

  2. If a,b are positive quantitis and if a(1)=(a+b)/(2), b(1)=sqrt(a(1)b) ...

    Text Solution

    |

  3. tan""(2pi)/(5)-tan""(pi)/(15)-sqrt3tan""(2pi)/(5)tan""(pi)/(15) is equ...

    Text Solution

    |

  4. If a(1), a(2), a(3),...., a(n) is an A.P. with common difference d, th...

    Text Solution

    |

  5. If x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3)) , then -

    Text Solution

    |

  6. Which of the following angles is greater? theta1=sin^(-1)+sin^(-1)1/3o...

    Text Solution

    |

  7. The value of cos[1/2 cos^(-1){cos(sin^(-1)((sqrt63)/(8)))}] is

    Text Solution

    |

  8. Solve for x: - tan^(-1)("x"+1)+tan^(-1)("x"-1)=tan^(-1) (8/31)

    Text Solution

    |

  9. If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)...

    Text Solution

    |

  10. The sum of the two angles cot^(-1) 3 and cosec^(-1) sqrt(5) is

    Text Solution

    |

  11. Show that: cos(2tan^(-1)1/7)=sin(4^(-1)1/3)

    Text Solution

    |

  12. The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x ...

    Text Solution

    |

  13. cos{cos^(-1)(-1/7)+sin^(-1)(-1/7)} =

    Text Solution

    |

  14. If cos^(-1)x + cos^(-1)y + cos^(-1)z = 3pi, then xy + yz +zx is equal ...

    Text Solution

    |

  15. Evaluate: sin(1/2cos^(-1)4/5)

    Text Solution

    |

  16. If xge0 and theta=sin^(-1)x+cos^(-1)x-tan^(-1)x, then

    Text Solution

    |

  17. If tan^(-1)a+tan^(-1)b+tan^(-1)c=pi then prove tjhat a+b+c=abc

    Text Solution

    |

  18. The value of cot("cosec"^(-1)(5)/(3)+"tan"^(-1)(2)/(3)) is :

    Text Solution

    |

  19. Prove the following : sin^(-1)(4/5)+2\ tan^(-1)(1/3)=pi/2

    Text Solution

    |

  20. The equation sin^-1x-cos^-1x=cos^-1(sqrt3/2) has

    Text Solution

    |