Home
Class 12
MATHS
If tan^(-1)a+tan^(-1)b+tan^(-1)c=pi then...

If `tan^(-1)a+tan^(-1)b+tan^(-1)c=pi` then prove tjhat `a+b+c=abc`

A

a+b+c=abc

B

ab+bc+ca=abc

C

`(1)/(a)+(1)/(b)+(1)/(c )-(1)/(abc)=0`

D

`ab+bc+ca=a+b+c`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that if \( \tan^{-1} a + \tan^{-1} b + \tan^{-1} c = \pi \), then \( a + b + c = abc \), we can follow these steps: ### Step 1: Start with the given equation We have: \[ \tan^{-1} a + \tan^{-1} b + \tan^{-1} c = \pi \] ### Step 2: Use the property of the tangent function Using the property of the tangent function, we can express the sum of two inverse tangents: \[ \tan^{-1} a + \tan^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \] This holds true as long as \( ab < 1 \). ### Step 3: Rewrite the equation We can rewrite the equation as: \[ \tan^{-1} \left( \frac{a + b}{1 - ab} \right) + \tan^{-1} c = \pi \] ### Step 4: Apply the tangent function Taking the tangent of both sides: \[ \tan \left( \tan^{-1} \left( \frac{a + b}{1 - ab} \right) + \tan^{-1} c \right) = \tan(\pi) \] Since \( \tan(\pi) = 0 \), we have: \[ \tan \left( \tan^{-1} \left( \frac{a + b}{1 - ab} \right) + \tan^{-1} c \right) = 0 \] ### Step 5: Use the tangent addition formula Using the tangent addition formula: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] we can express it as: \[ \frac{\frac{a + b}{1 - ab} + c}{1 - \frac{a + b}{1 - ab} \cdot c} = 0 \] ### Step 6: Set the numerator to zero For the fraction to equal zero, the numerator must be zero: \[ \frac{a + b + c(1 - ab)}{1 - ab - c(a + b)} = 0 \] Thus, we have: \[ a + b + c(1 - ab) = 0 \] ### Step 7: Rearranging the equation Rearranging gives: \[ a + b + c - abc = 0 \] or \[ a + b + c = abc \] ### Conclusion Thus, we have proved that if \( \tan^{-1} a + \tan^{-1} b + \tan^{-1} c = \pi \), then: \[ a + b + c = abc \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|72 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1) a+tan^(-1) b +tan^(-1)c=pi , prove that a+b+c=abc.

If tan^(-1) x+tan^(-1)y+tan^(-1)z=pi/2 then prove that yz+zx+xy=1

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

Prove that: tan^(-1)1+tan^(-1)2+tan^(-1)3=pi

Prove that : tan^(-1)1+tan^(-1)2+tan^(-1)3=pi

If three positive numbers a,b,c are in A.P ad tan^(-1)a,tan^(-1)b,tan^(-1)c are also in A.P such that b lt 1 and ac lt 1 then

Prove that tan^(-1)1+tan^(-1)2+tan^(-1)3 =pi

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Chapter Test
  1. The value of (alpha^(3))/(2) cosec^(2) ((1)/(2) tan^(-1) ((alpha)/(bet...

    Text Solution

    |

  2. If a,b are positive quantitis and if a(1)=(a+b)/(2), b(1)=sqrt(a(1)b) ...

    Text Solution

    |

  3. tan""(2pi)/(5)-tan""(pi)/(15)-sqrt3tan""(2pi)/(5)tan""(pi)/(15) is equ...

    Text Solution

    |

  4. If a(1), a(2), a(3),...., a(n) is an A.P. with common difference d, th...

    Text Solution

    |

  5. If x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3)) , then -

    Text Solution

    |

  6. Which of the following angles is greater? theta1=sin^(-1)+sin^(-1)1/3o...

    Text Solution

    |

  7. The value of cos[1/2 cos^(-1){cos(sin^(-1)((sqrt63)/(8)))}] is

    Text Solution

    |

  8. Solve for x: - tan^(-1)("x"+1)+tan^(-1)("x"-1)=tan^(-1) (8/31)

    Text Solution

    |

  9. If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)...

    Text Solution

    |

  10. The sum of the two angles cot^(-1) 3 and cosec^(-1) sqrt(5) is

    Text Solution

    |

  11. Show that: cos(2tan^(-1)1/7)=sin(4^(-1)1/3)

    Text Solution

    |

  12. The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x ...

    Text Solution

    |

  13. cos{cos^(-1)(-1/7)+sin^(-1)(-1/7)} =

    Text Solution

    |

  14. If cos^(-1)x + cos^(-1)y + cos^(-1)z = 3pi, then xy + yz +zx is equal ...

    Text Solution

    |

  15. Evaluate: sin(1/2cos^(-1)4/5)

    Text Solution

    |

  16. If xge0 and theta=sin^(-1)x+cos^(-1)x-tan^(-1)x, then

    Text Solution

    |

  17. If tan^(-1)a+tan^(-1)b+tan^(-1)c=pi then prove tjhat a+b+c=abc

    Text Solution

    |

  18. The value of cot("cosec"^(-1)(5)/(3)+"tan"^(-1)(2)/(3)) is :

    Text Solution

    |

  19. Prove the following : sin^(-1)(4/5)+2\ tan^(-1)(1/3)=pi/2

    Text Solution

    |

  20. The equation sin^-1x-cos^-1x=cos^-1(sqrt3/2) has

    Text Solution

    |