Home
Class 12
MATHS
The equation sin^-1x-cos^-1x=cos^-1(sqrt...

The equation `sin^-1x-cos^-1x=cos^-1(sqrt3/2)` has

A

no solution

B

unique solution

C

infinite number of solution

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1} x - \cos^{-1} x = \cos^{-1} \left( \frac{\sqrt{3}}{2} \right) \), we can follow these steps: ### Step 1: Rewrite the equation using trigonometric identities We know that \( \cos^{-1} x + \sin^{-1} x = \frac{\pi}{2} \). Therefore, we can rewrite the equation as: \[ \sin^{-1} x - \left( \frac{\pi}{2} - \sin^{-1} x \right) = \cos^{-1} \left( \frac{\sqrt{3}}{2} \right) \] This simplifies to: \[ 2 \sin^{-1} x - \frac{\pi}{2} = \cos^{-1} \left( \frac{\sqrt{3}}{2} \right) \] ### Step 2: Find \( \cos^{-1} \left( \frac{\sqrt{3}}{2} \right) \) The value of \( \cos^{-1} \left( \frac{\sqrt{3}}{2} \right) \) is known to be \( \frac{\pi}{6} \). Thus, we have: \[ 2 \sin^{-1} x - \frac{\pi}{2} = \frac{\pi}{6} \] ### Step 3: Solve for \( \sin^{-1} x \) Rearranging gives: \[ 2 \sin^{-1} x = \frac{\pi}{2} + \frac{\pi}{6} \] To combine the fractions, we find a common denominator: \[ \frac{\pi}{2} = \frac{3\pi}{6} \quad \text{and} \quad \frac{\pi}{6} = \frac{\pi}{6} \] Thus: \[ 2 \sin^{-1} x = \frac{3\pi}{6} + \frac{\pi}{6} = \frac{4\pi}{6} = \frac{2\pi}{3} \] ### Step 4: Divide by 2 Now, divide both sides by 2: \[ \sin^{-1} x = \frac{2\pi}{6} = \frac{\pi}{3} \] ### Step 5: Solve for \( x \) Taking the sine of both sides gives: \[ x = \sin \left( \frac{\pi}{3} \right) = \frac{\sqrt{3}}{2} \] ### Step 6: Consider the range of \( x \) Since \( \sin^{-1} x \) is defined for \( x \) in the range \([-1, 1]\), we check if \( x = \frac{\sqrt{3}}{2} \) is valid. It is valid as \( \frac{\sqrt{3}}{2} \) lies within this range. ### Step 7: Check for additional solutions The original equation can also yield negative values, hence we consider: \[ x = -\frac{\sqrt{3}}{2} \] This is also valid as it lies within the range of \( \sin^{-1} \). ### Conclusion Thus, the solutions to the equation \( \sin^{-1} x - \cos^{-1} x = \cos^{-1} \left( \frac{\sqrt{3}}{2} \right) \) are: \[ x = \frac{\sqrt{3}}{2} \quad \text{and} \quad x = -\frac{\sqrt{3}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|72 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos

Similar Questions

Explore conceptually related problems

The number of roots of the equation sin^(-1)x-cos^(-1)x=sin^(-1)(5x-3) is/ are

Solve sin^(-1) x - cos^(-1) x = cos ^(-1)(sqrt3/2) .

Which of the following is the solution set of the equation sin^-1 x = cos ^-1 x+ sin ^-1(3x-2)

The number of roots of the equation sin^(-1)x-(1)/(sin^(-1)x)=cos^(-1)x-(1)/(cos^(-1)x) is (a) 0 (b) 1 (c) 2 (d) 3

The number of real solution(s) of the equation sin^(-1)sqrt(x^(2)-x+1)+cos^(-1)sqrt(x^(2)-x)=pi is/are

The sum of all the solution(s) of the equation sin^(-1)2x=cos^(-1)x is 0 (2) 2/(sqrt(5)) (3) 1/(sqrt(5)) (4) (-1)/(sqrt(5))

Solve the equation of x:sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x

The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+cos^(-1)sqrt((x^(2)-x))=pi is :

The sum of the solution of the equation 2sin^(-1)sqrt(x^2+x+1)+cos^(-1)sqrt(x^2+x)=(3pi)/2 is 0 (b) -1 (c) 1 (d) 2

The range of the values of p for which the equation sin cos^(-1) ( cos (tan^(-1) x)) = p has a solution is

OBJECTIVE RD SHARMA ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS -Chapter Test
  1. The value of (alpha^(3))/(2) cosec^(2) ((1)/(2) tan^(-1) ((alpha)/(bet...

    Text Solution

    |

  2. If a,b are positive quantitis and if a(1)=(a+b)/(2), b(1)=sqrt(a(1)b) ...

    Text Solution

    |

  3. tan""(2pi)/(5)-tan""(pi)/(15)-sqrt3tan""(2pi)/(5)tan""(pi)/(15) is equ...

    Text Solution

    |

  4. If a(1), a(2), a(3),...., a(n) is an A.P. with common difference d, th...

    Text Solution

    |

  5. If x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3)) , then -

    Text Solution

    |

  6. Which of the following angles is greater? theta1=sin^(-1)+sin^(-1)1/3o...

    Text Solution

    |

  7. The value of cos[1/2 cos^(-1){cos(sin^(-1)((sqrt63)/(8)))}] is

    Text Solution

    |

  8. Solve for x: - tan^(-1)("x"+1)+tan^(-1)("x"-1)=tan^(-1) (8/31)

    Text Solution

    |

  9. If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)...

    Text Solution

    |

  10. The sum of the two angles cot^(-1) 3 and cosec^(-1) sqrt(5) is

    Text Solution

    |

  11. Show that: cos(2tan^(-1)1/7)=sin(4^(-1)1/3)

    Text Solution

    |

  12. The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x ...

    Text Solution

    |

  13. cos{cos^(-1)(-1/7)+sin^(-1)(-1/7)} =

    Text Solution

    |

  14. If cos^(-1)x + cos^(-1)y + cos^(-1)z = 3pi, then xy + yz +zx is equal ...

    Text Solution

    |

  15. Evaluate: sin(1/2cos^(-1)4/5)

    Text Solution

    |

  16. If xge0 and theta=sin^(-1)x+cos^(-1)x-tan^(-1)x, then

    Text Solution

    |

  17. If tan^(-1)a+tan^(-1)b+tan^(-1)c=pi then prove tjhat a+b+c=abc

    Text Solution

    |

  18. The value of cot("cosec"^(-1)(5)/(3)+"tan"^(-1)(2)/(3)) is :

    Text Solution

    |

  19. Prove the following : sin^(-1)(4/5)+2\ tan^(-1)(1/3)=pi/2

    Text Solution

    |

  20. The equation sin^-1x-cos^-1x=cos^-1(sqrt3/2) has

    Text Solution

    |