Home
Class 12
MATHS
If int(0) ^(x) f (t) dt = x + int (x ...

If` int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, ` then the value of ` f (1)` , is

A

`1//2`

B

`0`

C

`1`

D

`-1//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \int_{0}^{x} f(t) \, dt = x + \int_{x}^{1} t f(t) \, dt \] ### Step 1: Differentiate both sides with respect to \( x \) Using Leibniz's rule for differentiating under the integral sign, we differentiate the left-hand side and the right-hand side: \[ \frac{d}{dx} \left( \int_{0}^{x} f(t) \, dt \right) = f(x) \] For the right-hand side, we differentiate: \[ \frac{d}{dx} \left( x + \int_{x}^{1} t f(t) \, dt \right) = 1 + \frac{d}{dx} \left( \int_{x}^{1} t f(t) \, dt \right) \] Using Leibniz's rule again for the integral: \[ \frac{d}{dx} \left( \int_{x}^{1} t f(t) \, dt \right) = -x f(x) \] Thus, the right-hand side becomes: \[ 1 - x f(x) \] ### Step 2: Set the derivatives equal to each other Now we equate the derivatives from both sides: \[ f(x) = 1 - x f(x) \] ### Step 3: Solve for \( f(x) \) Rearranging the equation gives: \[ f(x) + x f(x) = 1 \] Factoring out \( f(x) \): \[ f(x)(1 + x) = 1 \] Now, we can solve for \( f(x) \): \[ f(x) = \frac{1}{1 + x} \] ### Step 4: Find \( f(1) \) Now we need to find \( f(1) \): \[ f(1) = \frac{1}{1 + 1} = \frac{1}{2} \] Thus, the value of \( f(1) \) is: \[ \boxed{\frac{1}{2}} \]

To solve the problem, we start with the given equation: \[ \int_{0}^{x} f(t) \, dt = x + \int_{x}^{1} t f(t) \, dt \] ### Step 1: Differentiate both sides with respect to \( x \) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

Consider the function f (x) and g (x), both defined from R to R f (x) = (x ^(3))/(2 )+1 -x int _(0)^(x) g (t) dt and g (x) =x - int _(0) ^(1) f (t) dt, then The number of points of intersection of f (x) and g (x) is/are:

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

Given a function g, continous everywhere such that g (1)=5 and int _(0)^(1) g (t) dt =2. If f (x) =1/2 int _(0) ^(x) (x -t)^(2) g (t) dt, then find the value of f '(1)+f''(1).

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

If f:R in R is continuous and differentiable function such that int_(-1)^(x) f(t)dt+f'''(3) int_(x)^(0) dt=int_(1)^(x) t^(3)dt-f'(1)int_(0)^(x) t^(2)dt+f'(2) int_(x)^(3) r dt , then the value of f'(4), is

Let f be a continuous function satisfying the equation int_(0)^(x)f(t)dt+int_(0)^(x)tf(x-t)dt=e^(-x)-1 , then find the value of e^(9)f(9) is equal to…………………..

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. int(0)^(10)|x(x-1)(x-2)|dx is equal to

    Text Solution

    |

  2. If int(0) ^(x) f (t) dt = x + int (x ) ^(1) t f (t) dt, then the v...

    Text Solution

    |

  3. Let f be a positive function. Let I(1)=int(1-k)^(k)x f[x(1-x)]dx , I(...

    Text Solution

    |

  4. If g(x)=int(0)^(x)cos^(4)t dt, then g(x+pi) equals to (a)(g(x))/(g(pi)...

    Text Solution

    |

  5. If l(n)=int(0)^(pi//4) tan^(n)x dx, n in N "then" I(n+2)+I(n) equals

    Text Solution

    |

  6. If rArr I(n)=int(0)^(pi//4) tan ^(n)x dx, then for any positive integ...

    Text Solution

    |

  7. Find the value of int(-1)^1d/(dx)(tan^(-1)(1/x))dx

    Text Solution

    |

  8. The value of the integral underset(-1)overset(3 )int ("tan"^(1)(x)/(...

    Text Solution

    |

  9. If =int(1)^(e) (logx)^(n) dx, "then"I(n)+nI(n-1) is equal to

    Text Solution

    |

  10. If =int(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I(n)-nI(n-1)=

    Text Solution

    |

  11. The value of int(1//n)^((an-1)//n) (sqrt(x))/(sqrt(a-x)+sqrtx)dx, is

    Text Solution

    |

  12. The value of the integral int(0)^(pi//2)log |tan x cot x |dx is

    Text Solution

    |

  13. If I(1)=int(x)^(1)(1)/(1+t^(2)) dt and I(2)=int(1)^(1//x)(1)/(1+t^(2))...

    Text Solution

    |

  14. The value of int(1/e->tanx) (tdt)/(1+t^2) + int(1/e->cotx) (dt)/(t*(1+...

    Text Solution

    |

  15. The absolute value of int(10)^(19) (cosx)/(1+x^(8))dx, is

    Text Solution

    |

  16. If f(x) is an odd pefiodc function defined on the interval [T/2,T/2], ...

    Text Solution

    |

  17. If int(pi//2)^(theta) sin x dx=sin 2 theta then the of theta satisfyin...

    Text Solution

    |

  18. If f(x) is periodic function with period, T, then

    Text Solution

    |

  19. The value of lim(n rarr infty) (1)/(n) {(n+1)(n+2)(n+3)…(n+n)}^(1//n)...

    Text Solution

    |

  20. The points of extremum of phi (x)=int(1)^(x)e^(-t^(2//2)) (1-t^(2)) dt...

    Text Solution

    |