Home
Class 12
MATHS
If l(n)=int(0)^(pi//4) tan^(n)x dx, n in...

If `l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n)` equals

A

`(1)/(n)`

B

`(1)/(n-1)`

C

`(1)/(n+1)`

D

`(1)/(n+2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \( I_n + I_{n+2} \), where \( I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \). ### Step-by-Step Solution: 1. **Write the integral expression**: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \] 2. **Express \( \tan^n x \) in terms of \( \tan^{n-2} x \)**: We can rewrite \( \tan^n x \) as \( \tan^{n-2} x \cdot \tan^2 x \). \[ I_n = \int_0^{\frac{\pi}{4}} \tan^{n-2} x \cdot \tan^2 x \, dx \] 3. **Substitute \( \tan^2 x \)**: We know that \( \tan^2 x = \sec^2 x - 1 \), so we can substitute this into the integral: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^{n-2} x \cdot (\sec^2 x - 1) \, dx \] 4. **Split the integral**: This gives us two integrals: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^{n-2} x \cdot \sec^2 x \, dx - \int_0^{\frac{\pi}{4}} \tan^{n-2} x \, dx \] Let \( I_{n-2} = \int_0^{\frac{\pi}{4}} \tan^{n-2} x \, dx \). Then we can write: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^{n-2} x \cdot \sec^2 x \, dx - I_{n-2} \] 5. **Change of variable**: For the first integral, we can use the substitution \( t = \tan x \), which gives \( dt = \sec^2 x \, dx \). The limits change from \( x = 0 \) to \( x = \frac{\pi}{4} \) resulting in \( t = 0 \) to \( t = 1 \): \[ I_n = \int_0^1 t^{n-2} \, dt - I_{n-2} \] 6. **Evaluate the integral**: The integral \( \int_0^1 t^{n-2} \, dt \) evaluates to: \[ \int_0^1 t^{n-2} \, dt = \frac{1}{n-1} \quad \text{(for \( n > 1 \))} \] Thus, \[ I_n = \frac{1}{n-1} - I_{n-2} \] 7. **Express \( I_{n+2} \)**: Similarly, we can express \( I_{n+2} \) using the same approach: \[ I_{n+2} = \int_0^{\frac{\pi}{4}} \tan^{n} x \cdot \sec^2 x \, dx - I_n \] This leads to: \[ I_{n+2} = \frac{1}{n+1} - I_n \] 8. **Combine the results**: Now we can add \( I_n \) and \( I_{n+2} \): \[ I_n + I_{n+2} = \left( \frac{1}{n-1} - I_{n-2} \right) + \left( \frac{1}{n+1} - I_n \right) \] Rearranging gives: \[ I_n + I_{n+2} = \frac{1}{n-1} + \frac{1}{n+1} - I_n - I_{n-2} \] 9. **Final expression**: After simplification, we find that: \[ I_n + I_{n+2} = \frac{1}{n+1} \] ### Conclusion: Thus, the final result is: \[ I_n + I_{n+2} = \frac{1}{n+1} \]

To solve the problem, we need to find the expression for \( I_n + I_{n+2} \), where \( I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \). ### Step-by-Step Solution: 1. **Write the integral expression**: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

Let f(x) = int_(0)^(pi)(sinx)^(n) dx, n in N then

If I_(n)=int_(0)^(pi//4) tan^(n)theta d theta , then I_(8)+I_(6) equals

If I_(n)=int_(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I_(n)+I_(n-2)=1/(n+1) (b) I_(n)+I_(n-2)=1/(n-1) (c) I_(2)+I_(4),I_(6),……. are in H.P. (d) 1/(2(n+1))ltI_(n)lt1/(2(n-1))

l_(n)=int_(0)^(pi//4)tan^(n)xdx , then lim_(nto oo)n[l_(n)+l_(n-2)] equals

Let I_(n)=int_(0)^(pi//2) cos^(n)x cos nx dx . Then, I_(n):I_(n+1) is equal to

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=

If I_(n)=int_(0)^(pi) e^(x)sin^(n)x " dx then " (I_(3))/(I_(1)) is equal to

Let I_(n) = int_(0)^(1)x^(n)(tan^(1)x)dx, n in N , then

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. Let f be a positive function. Let I(1)=int(1-k)^(k)x f[x(1-x)]dx , I(...

    Text Solution

    |

  2. If g(x)=int(0)^(x)cos^(4)t dt, then g(x+pi) equals to (a)(g(x))/(g(pi)...

    Text Solution

    |

  3. If l(n)=int(0)^(pi//4) tan^(n)x dx, n in N "then" I(n+2)+I(n) equals

    Text Solution

    |

  4. If rArr I(n)=int(0)^(pi//4) tan ^(n)x dx, then for any positive integ...

    Text Solution

    |

  5. Find the value of int(-1)^1d/(dx)(tan^(-1)(1/x))dx

    Text Solution

    |

  6. The value of the integral underset(-1)overset(3 )int ("tan"^(1)(x)/(...

    Text Solution

    |

  7. If =int(1)^(e) (logx)^(n) dx, "then"I(n)+nI(n-1) is equal to

    Text Solution

    |

  8. If =int(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I(n)-nI(n-1)=

    Text Solution

    |

  9. The value of int(1//n)^((an-1)//n) (sqrt(x))/(sqrt(a-x)+sqrtx)dx, is

    Text Solution

    |

  10. The value of the integral int(0)^(pi//2)log |tan x cot x |dx is

    Text Solution

    |

  11. If I(1)=int(x)^(1)(1)/(1+t^(2)) dt and I(2)=int(1)^(1//x)(1)/(1+t^(2))...

    Text Solution

    |

  12. The value of int(1/e->tanx) (tdt)/(1+t^2) + int(1/e->cotx) (dt)/(t*(1+...

    Text Solution

    |

  13. The absolute value of int(10)^(19) (cosx)/(1+x^(8))dx, is

    Text Solution

    |

  14. If f(x) is an odd pefiodc function defined on the interval [T/2,T/2], ...

    Text Solution

    |

  15. If int(pi//2)^(theta) sin x dx=sin 2 theta then the of theta satisfyin...

    Text Solution

    |

  16. If f(x) is periodic function with period, T, then

    Text Solution

    |

  17. The value of lim(n rarr infty) (1)/(n) {(n+1)(n+2)(n+3)…(n+n)}^(1//n)...

    Text Solution

    |

  18. The points of extremum of phi (x)=int(1)^(x)e^(-t^(2//2)) (1-t^(2)) dt...

    Text Solution

    |

  19. int(-2)^(2) min(x-[x],-x-[x])dx equals, where [x] represents greates i...

    Text Solution

    |

  20. The integral int(0)^(a) (g(x))/(f(x)+f(a-x))dx vanishes, if

    Text Solution

    |