Home
Class 12
MATHS
If rArr I(n)=int(0)^(pi//4) tan ^(n)x d...

If `rArr I_(n)=int_(0)^(pi//4) tan ^(n)x dx`, then for any positive integer, n, the value of `n(I_(n+1)+I_(n-1))` is,

A

1

B

2

C

`pi//4`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the integral defined as: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \] We need to find the value of \( n(I_{n+1} + I_{n-1}) \). ### Step 1: Express \( I_{n+1} \) We can express \( I_{n+1} \) as follows: \[ I_{n+1} = \int_0^{\frac{\pi}{4}} \tan^{n+1} x \, dx = \int_0^{\frac{\pi}{4}} \tan^n x \tan x \, dx \] Using the identity \( \tan^2 x = \sec^2 x - 1 \), we can rewrite \( \tan^{n+1} x \): \[ I_{n+1} = \int_0^{\frac{\pi}{4}} \tan^n x (\sec^2 x - 1) \, dx \] This can be split into two integrals: \[ I_{n+1} = \int_0^{\frac{\pi}{4}} \tan^n x \sec^2 x \, dx - \int_0^{\frac{\pi}{4}} \tan^n x \, dx \] Thus, we have: \[ I_{n+1} = \int_0^{\frac{\pi}{4}} \tan^n x \sec^2 x \, dx - I_n \] ### Step 2: Express \( I_{n-1} \) Now, we express \( I_{n-1} \): \[ I_{n-1} = \int_0^{\frac{\pi}{4}} \tan^{n-1} x \, dx \] ### Step 3: Combine \( I_{n+1} \) and \( I_{n-1} \) Now, we combine \( I_{n+1} \) and \( I_{n-1} \): \[ I_{n+1} + I_{n-1} = \left( \int_0^{\frac{\pi}{4}} \tan^n x \sec^2 x \, dx - I_n \right) + I_{n-1} \] This simplifies to: \[ I_{n+1} + I_{n-1} = \int_0^{\frac{\pi}{4}} \tan^n x \sec^2 x \, dx - I_n + I_{n-1} \] ### Step 4: Change of Variables Next, we perform a change of variables. Let \( t = \tan x \), then \( dt = \sec^2 x \, dx \). The limits change from \( x = 0 \) to \( x = \frac{\pi}{4} \) which corresponds to \( t = 0 \) to \( t = 1 \). Thus, we have: \[ \int_0^{\frac{\pi}{4}} \tan^n x \sec^2 x \, dx = \int_0^1 t^n \, dt \] Calculating this integral gives: \[ \int_0^1 t^n \, dt = \frac{1}{n+1} \] ### Step 5: Substitute Back Now substituting back, we have: \[ I_{n+1} + I_{n-1} = \frac{1}{n+1} - I_n + I_{n-1} \] ### Step 6: Final Calculation Now we multiply the entire expression by \( n \): \[ n(I_{n+1} + I_{n-1}) = n \left( \frac{1}{n+1} - I_n + I_{n-1} \right) \] Since \( I_n \) and \( I_{n-1} \) terms will cancel out, we find: \[ n(I_{n+1} + I_{n-1}) = 1 \] ### Final Answer Thus, the value of \( n(I_{n+1} + I_{n-1}) \) is: \[ \boxed{1} \]

To solve the problem, we start with the integral defined as: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \] We need to find the value of \( n(I_{n+1} + I_{n-1}) \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

If n is any positive integer, write the value of (i^(4n+1)-i^(4n-1))/2 .

For a positive integer n , find the value of (1-i)^(n) (1 - 1/i)^(n)

For a positive integer n , find the value of ( 1-i)^n(1-1/i)^ndot

For a positive integer n , find the value of (1-i)^n(1-1/i)^ndot

If I_(n)=int_(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I_(n)+I_(n-2)=1/(n+1) (b) I_(n)+I_(n-2)=1/(n-1) (c) I_(2)+I_(4),I_(6),……. are in H.P. (d) 1/(2(n+1))ltI_(n)lt1/(2(n-1))

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

If I_(n)=int_(0)^(pi//4) tan^(n)theta d theta , then I_(8)+I_(6) equals

If U_(n)=int_(0)^(pi)(1-cosnx)/(1-cosx)dx where n is positive integer of zero, then The value of U_(n) is a. pi//2 b. pi c. npi//2 d. npi

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If g(x)=int(0)^(x)cos^(4)t dt, then g(x+pi) equals to (a)(g(x))/(g(pi)...

    Text Solution

    |

  2. If l(n)=int(0)^(pi//4) tan^(n)x dx, n in N "then" I(n+2)+I(n) equals

    Text Solution

    |

  3. If rArr I(n)=int(0)^(pi//4) tan ^(n)x dx, then for any positive integ...

    Text Solution

    |

  4. Find the value of int(-1)^1d/(dx)(tan^(-1)(1/x))dx

    Text Solution

    |

  5. The value of the integral underset(-1)overset(3 )int ("tan"^(1)(x)/(...

    Text Solution

    |

  6. If =int(1)^(e) (logx)^(n) dx, "then"I(n)+nI(n-1) is equal to

    Text Solution

    |

  7. If =int(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I(n)-nI(n-1)=

    Text Solution

    |

  8. The value of int(1//n)^((an-1)//n) (sqrt(x))/(sqrt(a-x)+sqrtx)dx, is

    Text Solution

    |

  9. The value of the integral int(0)^(pi//2)log |tan x cot x |dx is

    Text Solution

    |

  10. If I(1)=int(x)^(1)(1)/(1+t^(2)) dt and I(2)=int(1)^(1//x)(1)/(1+t^(2))...

    Text Solution

    |

  11. The value of int(1/e->tanx) (tdt)/(1+t^2) + int(1/e->cotx) (dt)/(t*(1+...

    Text Solution

    |

  12. The absolute value of int(10)^(19) (cosx)/(1+x^(8))dx, is

    Text Solution

    |

  13. If f(x) is an odd pefiodc function defined on the interval [T/2,T/2], ...

    Text Solution

    |

  14. If int(pi//2)^(theta) sin x dx=sin 2 theta then the of theta satisfyin...

    Text Solution

    |

  15. If f(x) is periodic function with period, T, then

    Text Solution

    |

  16. The value of lim(n rarr infty) (1)/(n) {(n+1)(n+2)(n+3)…(n+n)}^(1//n)...

    Text Solution

    |

  17. The points of extremum of phi (x)=int(1)^(x)e^(-t^(2//2)) (1-t^(2)) dt...

    Text Solution

    |

  18. int(-2)^(2) min(x-[x],-x-[x])dx equals, where [x] represents greates i...

    Text Solution

    |

  19. The integral int(0)^(a) (g(x))/(f(x)+f(a-x))dx vanishes, if

    Text Solution

    |

  20. If (1)/(sqrt(a))int(1)^(a)((3)/(2)sqrt(x)+1-(1)/(sqrt(x)))dx lt4 then ...

    Text Solution

    |