Home
Class 12
MATHS
If =int(0)^(1) x^(n)e^(-x)dx "for" n in ...

If =`int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=`

A

e

B

`1//e`

C

`-1//e`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( I_n - n I_{n-1} \) where \( I_n = \int_0^1 x^n e^{-x} \, dx \). ### Step 1: Define \( I_n \) We start with the definition of \( I_n \): \[ I_n = \int_0^1 x^n e^{-x} \, dx \] ### Step 2: Apply Integration by Parts We will use integration by parts, where we let: - \( u = x^n \) (thus \( du = n x^{n-1} \, dx \)) - \( dv = e^{-x} \, dx \) (thus \( v = -e^{-x} \)) Using integration by parts, we have: \[ I_n = \left[ -x^n e^{-x} \right]_0^1 + \int_0^1 n x^{n-1} e^{-x} \, dx \] ### Step 3: Evaluate the Boundary Terms Now, we evaluate the boundary terms: \[ \left[ -x^n e^{-x} \right]_0^1 = -1^n e^{-1} - \lim_{x \to 0} (-x^n e^{-x}) = -e^{-1} - 0 = -\frac{1}{e} \] ### Step 4: Substitute Back into the Integral Now substituting back into the equation for \( I_n \): \[ I_n = -\frac{1}{e} + n \int_0^1 x^{n-1} e^{-x} \, dx \] This integral is \( I_{n-1} \): \[ I_n = -\frac{1}{e} + n I_{n-1} \] ### Step 5: Rearranging the Equation Now we can rearrange this equation to find \( I_n - n I_{n-1} \): \[ I_n - n I_{n-1} = -\frac{1}{e} \] ### Final Result Thus, we have: \[ I_n - n I_{n-1} = -\frac{1}{e} \] ### Summary of Steps 1. Define \( I_n \) as the integral. 2. Use integration by parts to express \( I_n \). 3. Evaluate the boundary terms from integration by parts. 4. Substitute back to express \( I_n \) in terms of \( I_{n-1} \). 5. Rearrange to find the desired expression.

To solve the problem, we need to evaluate the expression \( I_n - n I_{n-1} \) where \( I_n = \int_0^1 x^n e^{-x} \, dx \). ### Step 1: Define \( I_n \) We start with the definition of \( I_n \): \[ I_n = \int_0^1 x^n e^{-x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

Let I_(n) = int_(0)^(1)x^(n)(tan^(1)x)dx, n in N , then

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

If = int_(1)^(e) (logx)^(n) dx, "then"I_(n)+nI_(n-1) is equal to

If I_(n)=int_(0)^(pi) e^(x)sin^(n)x " dx then " (I_(3))/(I_(1)) is equal to

If I_(n)=int_(0)^(pi) e^(x)(sinx)^(n)dx , then (I_(3))/(I_(1)) is equal to

Let I_(n)=int_(0)^(pi//2) cos^(n)x cos nx dx . Then, I_(n):I_(n+1) is equal to

IfI_n=int_0^1x^n(tan^(-1)x)dx ,t h e np rov et h a t (n+1)I_n+(n-1)I_(n-2)=-1/n+pi/2

If I_(n)=int_(0)^(pi/2) sin^(n)x dx , then show that I_(n)=((n-1)n)I_(n-2) . Hence prove that I_(n)={(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(1/2)(pi)/2,"if",n"is even"),(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(2/3)1,"if",n"is odd"):}

If A_n=int_0^(pi/2)(sin(2n-1)x)/(sinx)dx ,B_n=int_0^(pi/2)((sinn x)/(sinx))^2 dx for n inN , Then (A) A_(n+1)=A_n (B) B_(n+1)=B_n (C) A_(n+1)-A_n=B_(n+1) (D) B_(n+1)-B_n=A_(n+1)

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. The value of the integral underset(-1)overset(3 )int ("tan"^(1)(x)/(...

    Text Solution

    |

  2. If =int(1)^(e) (logx)^(n) dx, "then"I(n)+nI(n-1) is equal to

    Text Solution

    |

  3. If =int(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I(n)-nI(n-1)=

    Text Solution

    |

  4. The value of int(1//n)^((an-1)//n) (sqrt(x))/(sqrt(a-x)+sqrtx)dx, is

    Text Solution

    |

  5. The value of the integral int(0)^(pi//2)log |tan x cot x |dx is

    Text Solution

    |

  6. If I(1)=int(x)^(1)(1)/(1+t^(2)) dt and I(2)=int(1)^(1//x)(1)/(1+t^(2))...

    Text Solution

    |

  7. The value of int(1/e->tanx) (tdt)/(1+t^2) + int(1/e->cotx) (dt)/(t*(1+...

    Text Solution

    |

  8. The absolute value of int(10)^(19) (cosx)/(1+x^(8))dx, is

    Text Solution

    |

  9. If f(x) is an odd pefiodc function defined on the interval [T/2,T/2], ...

    Text Solution

    |

  10. If int(pi//2)^(theta) sin x dx=sin 2 theta then the of theta satisfyin...

    Text Solution

    |

  11. If f(x) is periodic function with period, T, then

    Text Solution

    |

  12. The value of lim(n rarr infty) (1)/(n) {(n+1)(n+2)(n+3)…(n+n)}^(1//n)...

    Text Solution

    |

  13. The points of extremum of phi (x)=int(1)^(x)e^(-t^(2//2)) (1-t^(2)) dt...

    Text Solution

    |

  14. int(-2)^(2) min(x-[x],-x-[x])dx equals, where [x] represents greates i...

    Text Solution

    |

  15. The integral int(0)^(a) (g(x))/(f(x)+f(a-x))dx vanishes, if

    Text Solution

    |

  16. If (1)/(sqrt(a))int(1)^(a)((3)/(2)sqrt(x)+1-(1)/(sqrt(x)))dx lt4 then ...

    Text Solution

    |

  17. Evaluate (int(0)^(n)[x]dx)/(int(0)^(n){x}dx) (where [x] and {x} are in...

    Text Solution

    |

  18. If f(x)=min{|x-1|,|x|,|x+1|, then the value of int(-1)^(1) f(x) dx is ...

    Text Solution

    |

  19. The value of int(0)^(100)[ tan ^(-1)x] d x is equal to (where [.] den...

    Text Solution

    |

  20. The value of int(-1)^(10) sgn (x-[x])dx is equal to (where, [.] denote...

    Text Solution

    |