Home
Class 12
MATHS
If I(1)=int(x)^(1)(1)/(1+t^(2)) dt and I...

If `I_(1)=int_(x)^(1)(1)/(1+t^(2)) dt and I_(2)=int_(1)^(1//x)(1)/(1+t^(2)) dt "for" x gt0` then,

A

`I_(1)=I_(2)`

B

`I_(1)gtI_(2)`

C

`I_(2)=I_(1)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the relationship between the two integrals \( I_1 \) and \( I_2 \) defined as follows: \[ I_1 = \int_{x}^{1} \frac{1}{1+t^2} \, dt \] \[ I_2 = \int_{1}^{\frac{1}{x}} \frac{1}{1+t^2} \, dt \] ### Step 1: Calculate \( I_1 \) To calculate \( I_1 \), we will use the formula for the integral of \( \frac{1}{1+t^2} \): \[ \int \frac{1}{1+t^2} \, dt = \tan^{-1}(t) + C \] Now, we can evaluate \( I_1 \): \[ I_1 = \int_{x}^{1} \frac{1}{1+t^2} \, dt = \tan^{-1}(t) \bigg|_{x}^{1} \] Applying the limits: \[ I_1 = \tan^{-1}(1) - \tan^{-1}(x) \] Since \( \tan^{-1}(1) = \frac{\pi}{4} \): \[ I_1 = \frac{\pi}{4} - \tan^{-1}(x) \] ### Step 2: Calculate \( I_2 \) Next, we calculate \( I_2 \): \[ I_2 = \int_{1}^{\frac{1}{x}} \frac{1}{1+t^2} \, dt = \tan^{-1}(t) \bigg|_{1}^{\frac{1}{x}} \] Applying the limits: \[ I_2 = \tan^{-1}\left(\frac{1}{x}\right) - \tan^{-1}(1) \] Again, since \( \tan^{-1}(1) = \frac{\pi}{4} \): \[ I_2 = \tan^{-1}\left(\frac{1}{x}\right) - \frac{\pi}{4} \] ### Step 3: Relate \( I_1 \) and \( I_2 \) Now we have: \[ I_1 = \frac{\pi}{4} - \tan^{-1}(x) \] \[ I_2 = \tan^{-1}\left(\frac{1}{x}\right) - \frac{\pi}{4} \] We can use the identity for the tangent inverse: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a+b}{1-ab}\right) \] For \( a = x \) and \( b = \frac{1}{x} \): \[ \tan^{-1}(x) + \tan^{-1}\left(\frac{1}{x}\right) = \tan^{-1}\left(\frac{x + \frac{1}{x}}{1 - 1}\right) = \frac{\pi}{2} \] Thus, we can rewrite \( I_2 \): \[ I_2 = \tan^{-1}\left(\frac{1}{x}\right) - \frac{\pi}{4} = \frac{\pi}{2} - \tan^{-1}(x) - \frac{\pi}{4} \] \[ I_2 = \frac{\pi}{4} - \tan^{-1}(x) \] ### Conclusion Now we can see that: \[ I_1 = I_2 \] Thus, the relationship between \( I_1 \) and \( I_2 \) is: \[ I_1 = I_2 \]

To solve the problem, we need to find the relationship between the two integrals \( I_1 \) and \( I_2 \) defined as follows: \[ I_1 = \int_{x}^{1} \frac{1}{1+t^2} \, dt \] \[ I_2 = \int_{1}^{\frac{1}{x}} \frac{1}{1+t^2} \, dt \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let I_(1)=int_(1)^(2)(x)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

If A = int_(1)^(sintheta) (t)/(1 + r^(2)) dt and B = int_(1)^("cosec"theta) (1)/(t(1 +t^(2))) dt , then the value of the determinant |(A,A^(2),B),(e^(A +B),B^(2),-1),(1,A^(2) + B^(2) ,-1)| is

Let f : R rarr R be defined as f(x) = int_(-1)^(e^(x)) (dt)/(1+t^(2)) + int_(1)^(e^(x))(dt)/(1+t^(2)) then

If x=int_(0)^(y)(1)/(sqrt(1+4t^(2))) dt, then (d^(2)y)/(dx^(2)) , is

int(1)/(tsqrt(t^(2) -1))dt

The value of (int_(0)^(1)(dt)/(sqrt(1-t^(4))))/(int_(0)^(1)(1)/(sqrt(1+t^(4)))dt) is

Statement-1: If f(x)=int_(1)^(x) (log_(e )t)/(1+t+t^(2))dt , then f(x)=f((1)/(x)) for all x gr 0 . Statement-2:If f(x) =int_(1)^(x) (log_(e )t)/(1+t)dt , then f(x)+f((1)/(x))=((log_(e )x)^(2))/(2)

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. The value of int(1//n)^((an-1)//n) (sqrt(x))/(sqrt(a-x)+sqrtx)dx, is

    Text Solution

    |

  2. The value of the integral int(0)^(pi//2)log |tan x cot x |dx is

    Text Solution

    |

  3. If I(1)=int(x)^(1)(1)/(1+t^(2)) dt and I(2)=int(1)^(1//x)(1)/(1+t^(2))...

    Text Solution

    |

  4. The value of int(1/e->tanx) (tdt)/(1+t^2) + int(1/e->cotx) (dt)/(t*(1+...

    Text Solution

    |

  5. The absolute value of int(10)^(19) (cosx)/(1+x^(8))dx, is

    Text Solution

    |

  6. If f(x) is an odd pefiodc function defined on the interval [T/2,T/2], ...

    Text Solution

    |

  7. If int(pi//2)^(theta) sin x dx=sin 2 theta then the of theta satisfyin...

    Text Solution

    |

  8. If f(x) is periodic function with period, T, then

    Text Solution

    |

  9. The value of lim(n rarr infty) (1)/(n) {(n+1)(n+2)(n+3)…(n+n)}^(1//n)...

    Text Solution

    |

  10. The points of extremum of phi (x)=int(1)^(x)e^(-t^(2//2)) (1-t^(2)) dt...

    Text Solution

    |

  11. int(-2)^(2) min(x-[x],-x-[x])dx equals, where [x] represents greates i...

    Text Solution

    |

  12. The integral int(0)^(a) (g(x))/(f(x)+f(a-x))dx vanishes, if

    Text Solution

    |

  13. If (1)/(sqrt(a))int(1)^(a)((3)/(2)sqrt(x)+1-(1)/(sqrt(x)))dx lt4 then ...

    Text Solution

    |

  14. Evaluate (int(0)^(n)[x]dx)/(int(0)^(n){x}dx) (where [x] and {x} are in...

    Text Solution

    |

  15. If f(x)=min{|x-1|,|x|,|x+1|, then the value of int(-1)^(1) f(x) dx is ...

    Text Solution

    |

  16. The value of int(0)^(100)[ tan ^(-1)x] d x is equal to (where [.] den...

    Text Solution

    |

  17. The value of int(-1)^(10) sgn (x-[x])dx is equal to (where, [.] denote...

    Text Solution

    |

  18. If n in N, then int(-n)^(n)(-1)^([x]) dx equals

    Text Solution

    |

  19. The value of :.int(0)^([x]) (2^(x))/(2^([x]))dx is

    Text Solution

    |

  20. If f(x) is a function satisfying f((1)/(x))+x^(2)f(x)=0 for all non ...

    Text Solution

    |