Home
Class 12
MATHS
If int(pi//2)^(theta) sin x dx=sin 2 the...

If `int_(pi//2)^(theta) sin x dx=sin 2 theta` then the of `theta` satisfying `0 lt theta lt pi`, is

A

`3pi//2`

B

`pi//6`

C

`5pi//6`

D

`pi//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral and set it equal to \( \sin 2\theta \) as given in the question. Let's go through the steps systematically. ### Step 1: Set Up the Integral We start with the integral: \[ I = \int_{\frac{\pi}{2}}^{\theta} \sin x \, dx \] ### Step 2: Evaluate the Integral The integral of \( \sin x \) is: \[ \int \sin x \, dx = -\cos x \] Now we can evaluate the definite integral from \( \frac{\pi}{2} \) to \( \theta \): \[ I = \left[-\cos x\right]_{\frac{\pi}{2}}^{\theta} = -\cos(\theta) - \left(-\cos\left(\frac{\pi}{2}\right)\right) \] Since \( \cos\left(\frac{\pi}{2}\right) = 0 \), we have: \[ I = -\cos(\theta) + 0 = -\cos(\theta) \] ### Step 3: Set Up the Equation According to the problem, this integral equals \( \sin 2\theta \): \[ -\cos(\theta) = \sin 2\theta \] Using the double angle identity for sine, we can rewrite \( \sin 2\theta \): \[ \sin 2\theta = 2 \sin \theta \cos \theta \] Thus, we have: \[ -\cos(\theta) = 2 \sin \theta \cos \theta \] ### Step 4: Rearranging the Equation Rearranging gives us: \[ \cos(\theta) + 2 \sin \theta \cos \theta = 0 \] Factoring out \( \cos(\theta) \): \[ \cos(\theta)(1 + 2 \sin \theta) = 0 \] ### Step 5: Solve for \( \theta \) This equation gives us two cases to consider: 1. \( \cos(\theta) = 0 \) 2. \( 1 + 2 \sin \theta = 0 \) #### Case 1: \( \cos(\theta) = 0 \) The solutions to \( \cos(\theta) = 0 \) in the interval \( (0, \pi) \) is: \[ \theta = \frac{\pi}{2} \] #### Case 2: \( 1 + 2 \sin \theta = 0 \) Solving for \( \sin \theta \): \[ 2 \sin \theta = -1 \quad \Rightarrow \quad \sin \theta = -\frac{1}{2} \] However, \( \sin \theta \) is negative in the interval \( (0, \pi) \) only at \( \theta = \frac{7\pi}{6} \) and \( \theta = \frac{11\pi}{6} \), which are outside the given range \( (0, \pi) \). ### Conclusion The only solution for \( \theta \) in the interval \( (0, \pi) \) is: \[ \theta = \frac{\pi}{2} \] ### Final Answer Thus, the value of \( \theta \) satisfying the condition is: \[ \theta = \frac{\pi}{2} \]

To solve the problem, we need to evaluate the integral and set it equal to \( \sin 2\theta \) as given in the question. Let's go through the steps systematically. ### Step 1: Set Up the Integral We start with the integral: \[ I = \int_{\frac{\pi}{2}}^{\theta} \sin x \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Solve tan theta tan 4theta=1 for 0 lt theta lt pi .

If sin(pi cos theta)=cos(pi sin theta) , then sin 2theta=

Solve: sin 7 theta + sin 4 theta + sin theta = 0, 0 lt theta lt ( pi)/(2)

Solve sin 9 theta = sin theta, for 0^(@) lt theta lt 360^(@).

The values of theta satisfying "sin" 7 theta = "sin" 4 theta -"sin" theta " and " 0 lt theta lt (pi)/(2) are

If sin theta =sqrt(3) cos theta, -pi lt theta lt 0 , then the value of theta is

The solution of costheta.cos2theta.cos3theta=1/4,0 lt theta lt pi/4 is:

Evaluate int_(0)^(pi//2) cos theta tan ^(-1) ( sin theta)d theta .

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

Statement I If 2 cos theta + sin theta=1(theta != (pi)/(2)) then the value of 7 cos theta + 6 sin theta is 2. Statement II If cos 2theta-sin theta=1/2, 0 lt theta lt pi/2 , then sin theta+cos 6 theta = 0 .

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. The absolute value of int(10)^(19) (cosx)/(1+x^(8))dx, is

    Text Solution

    |

  2. If f(x) is an odd pefiodc function defined on the interval [T/2,T/2], ...

    Text Solution

    |

  3. If int(pi//2)^(theta) sin x dx=sin 2 theta then the of theta satisfyin...

    Text Solution

    |

  4. If f(x) is periodic function with period, T, then

    Text Solution

    |

  5. The value of lim(n rarr infty) (1)/(n) {(n+1)(n+2)(n+3)…(n+n)}^(1//n)...

    Text Solution

    |

  6. The points of extremum of phi (x)=int(1)^(x)e^(-t^(2//2)) (1-t^(2)) dt...

    Text Solution

    |

  7. int(-2)^(2) min(x-[x],-x-[x])dx equals, where [x] represents greates i...

    Text Solution

    |

  8. The integral int(0)^(a) (g(x))/(f(x)+f(a-x))dx vanishes, if

    Text Solution

    |

  9. If (1)/(sqrt(a))int(1)^(a)((3)/(2)sqrt(x)+1-(1)/(sqrt(x)))dx lt4 then ...

    Text Solution

    |

  10. Evaluate (int(0)^(n)[x]dx)/(int(0)^(n){x}dx) (where [x] and {x} are in...

    Text Solution

    |

  11. If f(x)=min{|x-1|,|x|,|x+1|, then the value of int(-1)^(1) f(x) dx is ...

    Text Solution

    |

  12. The value of int(0)^(100)[ tan ^(-1)x] d x is equal to (where [.] den...

    Text Solution

    |

  13. The value of int(-1)^(10) sgn (x-[x])dx is equal to (where, [.] denote...

    Text Solution

    |

  14. If n in N, then int(-n)^(n)(-1)^([x]) dx equals

    Text Solution

    |

  15. The value of :.int(0)^([x]) (2^(x))/(2^([x]))dx is

    Text Solution

    |

  16. If f(x) is a function satisfying f((1)/(x))+x^(2)f(x)=0 for all non ...

    Text Solution

    |

  17. If f(x)={(e^cosx sinx ,, |x| leq 2),(2 ,, other wise):}. Then int-2^...

    Text Solution

    |

  18. The value of the integral int (e ^(-1))^(e ^(2))|(ln x )/(x)|dx is:

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. Let f: (0, infty) rarr R and F (x) = int(0) ^(x) f(t) dt . If F(x^(2)...

    Text Solution

    |