Home
Class 12
MATHS
The integral int(0)^(a) (g(x))/(f(x)+f(a...

The integral `int_(0)^(a) (g(x))/(f(x)+f(a-x))dx` vanishes, if

A

g(x) is odd

B

f(x) =f(a-x)

C

g(x)=-g(a-x)

D

f(a-x)g=g(x)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{a} \frac{g(x)}{f(x) + f(a-x)} \, dx \) and determine the condition under which it vanishes, we can follow these steps: ### Step-by-Step Solution 1. **Define the Integral**: Let \( I = \int_{0}^{a} \frac{g(x)}{f(x) + f(a-x)} \, dx \). 2. **Change of Variable**: We will use the substitution \( x = a - t \). Then, \( dx = -dt \). When \( x = 0 \), \( t = a \) and when \( x = a \), \( t = 0 \). Thus, we can rewrite the integral: \[ I = \int_{a}^{0} \frac{g(a - t)}{f(a - t) + f(t)} (-dt) = \int_{0}^{a} \frac{g(a - t)}{f(a - t) + f(t)} \, dt \] 3. **Rearranging the Integral**: Now we have two expressions for \( I \): \[ I = \int_{0}^{a} \frac{g(x)}{f(x) + f(a-x)} \, dx \] and \[ I = \int_{0}^{a} \frac{g(a - x)}{f(a - x) + f(x)} \, dx \] 4. **Adding the Two Integrals**: Adding these two equations gives: \[ 2I = \int_{0}^{a} \left( \frac{g(x)}{f(x) + f(a-x)} + \frac{g(a - x)}{f(a - x) + f(x)} \right) dx \] Since the denominators are the same, we can combine the numerators: \[ 2I = \int_{0}^{a} \frac{g(x) + g(a - x)}{f(x) + f(a-x)} \, dx \] 5. **Condition for Vanishing**: For \( I \) to vanish, the integral must equal zero: \[ I = 0 \implies \int_{0}^{a} \frac{g(x) + g(a - x)}{f(x) + f(a-x)} \, dx = 0 \] This integral will be zero if the numerator \( g(x) + g(a - x) = 0 \) for all \( x \) in the interval \( [0, a] \). 6. **Conclusion**: Therefore, the condition for the integral \( I \) to vanish is: \[ g(x) = -g(a - x) \] ### Final Answer The integral \( I = \int_{0}^{a} \frac{g(x)}{f(x) + f(a-x)} \, dx \) vanishes if \( g(x) = -g(a - x) \).

To solve the integral \( I = \int_{0}^{a} \frac{g(x)}{f(x) + f(a-x)} \, dx \) and determine the condition under which it vanishes, we can follow these steps: ### Step-by-Step Solution 1. **Define the Integral**: Let \( I = \int_{0}^{a} \frac{g(x)}{f(x) + f(a-x)} \, dx \). 2. **Change of Variable**: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(a)f(x)dx

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

If the function f(x) is symmetric about the line x=3 , then the value of the integral I=int_(-2)^(8)(f(x))/(f(x)+f(6-x))dx is

If f(1 + x) = f(1 - x) (AA x in R) , then the value of the integral I = int_(-7)^(9)(f(x))/(f(x)+f(2-x))dx is

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

The integral int_(0)^(pi) x f(sinx )dx is equal to

Evaluate each of the following integral: int_a^b(f(x))/(f(x)+f(a+b-x))dx

If f(x) is a continuous function satisfying f(x)=f(2-x) , then the value of the integral I=int_(-3)^(3)f(1+x)ln ((2+x)/(2-x))dx is equal to

The value of the integral overset(2a)underset(0)int (f(x))/(f(x)+f(2a-x))dx is equal to

The integral int_(0)^(pi//2) f(sin 2 x)sin x dx is equal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. The points of extremum of phi (x)=int(1)^(x)e^(-t^(2//2)) (1-t^(2)) dt...

    Text Solution

    |

  2. int(-2)^(2) min(x-[x],-x-[x])dx equals, where [x] represents greates i...

    Text Solution

    |

  3. The integral int(0)^(a) (g(x))/(f(x)+f(a-x))dx vanishes, if

    Text Solution

    |

  4. If (1)/(sqrt(a))int(1)^(a)((3)/(2)sqrt(x)+1-(1)/(sqrt(x)))dx lt4 then ...

    Text Solution

    |

  5. Evaluate (int(0)^(n)[x]dx)/(int(0)^(n){x}dx) (where [x] and {x} are in...

    Text Solution

    |

  6. If f(x)=min{|x-1|,|x|,|x+1|, then the value of int(-1)^(1) f(x) dx is ...

    Text Solution

    |

  7. The value of int(0)^(100)[ tan ^(-1)x] d x is equal to (where [.] den...

    Text Solution

    |

  8. The value of int(-1)^(10) sgn (x-[x])dx is equal to (where, [.] denote...

    Text Solution

    |

  9. If n in N, then int(-n)^(n)(-1)^([x]) dx equals

    Text Solution

    |

  10. The value of :.int(0)^([x]) (2^(x))/(2^([x]))dx is

    Text Solution

    |

  11. If f(x) is a function satisfying f((1)/(x))+x^(2)f(x)=0 for all non ...

    Text Solution

    |

  12. If f(x)={(e^cosx sinx ,, |x| leq 2),(2 ,, other wise):}. Then int-2^...

    Text Solution

    |

  13. The value of the integral int (e ^(-1))^(e ^(2))|(ln x )/(x)|dx is:

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. Let f: (0, infty) rarr R and F (x) = int(0) ^(x) f(t) dt . If F(x^(2)...

    Text Solution

    |

  16. The integral int(-1/2)^(1/2) ([x]+1n((1+x)/(1-x)))dx is equal to (wher...

    Text Solution

    |

  17. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  18. Let f(x)=int1^xsqrt(2-t^2)dtdot Then the real roots of the equation x^...

    Text Solution

    |

  19. If f((1)/(x)) +x^(2)f(x) =0, x gt0 and I= int(1//x)^(x) f(t)dt, (1)/(...

    Text Solution

    |

  20. If | int(a)^(b) f(x)dx|= int(a)^(b)|f(x)|dx,a ltb,"then " f(x)=0 has

    Text Solution

    |