Home
Class 12
MATHS
If f(x) is a function satisfying f((1)/...

If f(x) is a function satisfying `f((1)/(x))+x^(2)f(x)=0` for all non zero x then, ` int_(sin theta)^("cosec" theta) f(x)dx` equals

A

`sin theta+"cosec" theta`

B

`sin^(2)theta`

C

`"cosec" ^(2)theta`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the integral \[ I = \int_{\sin \theta}^{\csc \theta} f(x) \, dx \] given that \( f\left(\frac{1}{x}\right) + x^2 f(x) = 0 \) for all non-zero \( x \). ### Step-by-step Solution: 1. **Express \( f(x) \) in terms of \( f\left(\frac{1}{x}\right) \)**: From the equation \( f\left(\frac{1}{x}\right) + x^2 f(x) = 0 \), we can rearrange it to find: \[ f\left(\frac{1}{x}\right) = -x^2 f(x) \] 2. **Substitute \( f(x) \) into the integral**: We can substitute the expression for \( f\left(\frac{1}{x}\right) \) into the integral: \[ I = \int_{\sin \theta}^{\csc \theta} f(x) \, dx = \int_{\sin \theta}^{\csc \theta} -\frac{1}{x^2} f\left(\frac{1}{x}\right) \, dx \] 3. **Change of variable**: Let \( t = \frac{1}{x} \). Then, \( dx = -\frac{1}{t^2} dt \). When \( x = \sin \theta \), \( t = \csc \theta \), and when \( x = \csc \theta \), \( t = \sin \theta \). Thus, the limits of integration change: \[ I = \int_{\csc \theta}^{\sin \theta} -\frac{1}{\left(\frac{1}{t}\right)^2} f(t) \left(-\frac{1}{t^2}\right) dt \] Simplifying gives: \[ I = \int_{\csc \theta}^{\sin \theta} f(t) \, dt \] 4. **Rearranging the integral**: Now we can write: \[ I = \int_{\sin \theta}^{\csc \theta} f(x) \, dx = \int_{\csc \theta}^{\sin \theta} f(t) \, dt \] 5. **Combining the integrals**: Notice that: \[ I = -I \] This implies: \[ 2I = 0 \implies I = 0 \] ### Final Result: Thus, the value of the integral is: \[ \int_{\sin \theta}^{\csc \theta} f(x) \, dx = 0 \]

To solve the problem, we need to find the value of the integral \[ I = \int_{\sin \theta}^{\csc \theta} f(x) \, dx \] given that \( f\left(\frac{1}{x}\right) + x^2 f(x) = 0 \) for all non-zero \( x \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If f(x) is a function satisfying f(1/x)+x^2f(x)=0 for all nonzero x , then evaluate int_(sintheta)^(cos e ctheta)f(x)dx

If f(x) is a function satisfying f(x+a)+f(x)=0 for all x in R and positive constant a such that int_b^(c+b)f(x)dx is independent of b , then find the least positive value of c

If f(x) is a function satisfying f(x+a)+f(x)=0 for all x in R and positive constant a such that int_b^(c+b)f(x)dx is independent of b , then find the least positive value of cdot

If a function satisfies f(x+1)+f(x-1)=sqrt(2)f(x) , then period of f(x) can be

Let f(x) be a function defined on R satisfyin f(x) =f(1-x) for all x in R . Then int_(-1//2)^(1//2) f(x+(1)/(2))sin x dx equals

Let f(x) be a function satisfying the condition f(-x) = f(x) for all real x. If f'(0) exists, then its value is equal to

Let f be a one-one function satisfying f'(x)=f(x) then (f^-1)''(x) is equal to

Let f(x) is differentiable function satisfying 2int_(1)^(2)f(tx) dt = x+2, AA x in R Then int_(1)^(2)(8f(8x)-f(x)-21x) dx equal to

If f(x) is a continuous function satisfying f(x)=f(2-x) , then the value of the integral I=int_(-3)^(3)f(1+x)ln ((2+x)/(2-x))dx is equal to

If f(x) is a polynomial function satisfying the condition f(x) .f((1)/(x)) = f(x) + f((1)/(x)) and f(2) = 9 then

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If n in N, then int(-n)^(n)(-1)^([x]) dx equals

    Text Solution

    |

  2. The value of :.int(0)^([x]) (2^(x))/(2^([x]))dx is

    Text Solution

    |

  3. If f(x) is a function satisfying f((1)/(x))+x^(2)f(x)=0 for all non ...

    Text Solution

    |

  4. If f(x)={(e^cosx sinx ,, |x| leq 2),(2 ,, other wise):}. Then int-2^...

    Text Solution

    |

  5. The value of the integral int (e ^(-1))^(e ^(2))|(ln x )/(x)|dx is:

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. Let f: (0, infty) rarr R and F (x) = int(0) ^(x) f(t) dt . If F(x^(2)...

    Text Solution

    |

  8. The integral int(-1/2)^(1/2) ([x]+1n((1+x)/(1-x)))dx is equal to (wher...

    Text Solution

    |

  9. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  10. Let f(x)=int1^xsqrt(2-t^2)dtdot Then the real roots of the equation x^...

    Text Solution

    |

  11. If f((1)/(x)) +x^(2)f(x) =0, x gt0 and I= int(1//x)^(x) f(t)dt, (1)/(...

    Text Solution

    |

  12. If | int(a)^(b) f(x)dx|= int(a)^(b)|f(x)|dx,a ltb,"then " f(x)=0 has

    Text Solution

    |

  13. Let f(x) be an odd continous function which is periodic with period 2....

    Text Solution

    |

  14. All the value of d for which int(1)^(2){a^(2)+(4-4a)x+4x^(3)} d xle1...

    Text Solution

    |

  15. Let f(x) be a function defined by f(x)=int(1)^(x)t(t^(2)-3t+2)dt,1ltxl...

    Text Solution

    |

  16. If int(0)^(x){t}dt=int(0)^({x})t dt ("where" x gt0 neZ and and {*} rep...

    Text Solution

    |

  17. Let f(x)=max. {x+|x|,x-[x]} , where [x] denotes the greatest integer l...

    Text Solution

    |

  18. rArrint(0)^(oo) [(2)/(e^(x))]dx (where [*] denotes the greatest intege...

    Text Solution

    |

  19. Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint(b-1)^b(e^(-t)dt)/(...

    Text Solution

    |

  20. Evaluate: int(-1)^4f(x)dx=4a n dint2^4(3-f(x))dx=7, then find the val...

    Text Solution

    |