Home
Class 12
MATHS
If | int(a)^(b) f(x)dx|= int(a)^(b)|f(x)...

If `| int_(a)^(b) f(x)dx|= int_(a)^(b)|f(x)|dx,a ltb,"then " f(x)=0` has

A

exactly one root in (a,b)

B

at least one root in (a,b)

C

no root in (a,b)

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to prove that if \[ | \int_{a}^{b} f(x) \, dx | = \int_{a}^{b} |f(x)| \, dx \] and \( a < b \), then \( f(x) = 0 \) has no roots in the interval \( [a, b] \). ### Step-by-Step Solution: 1. **Understanding the given equation**: The equation states that the absolute value of the definite integral of \( f(x) \) from \( a \) to \( b \) is equal to the integral of the absolute value of \( f(x) \) over the same interval. 2. **Applying properties of integrals**: From the properties of definite integrals, we know that: \[ | \int_{a}^{b} f(x) \, dx | \leq \int_{a}^{b} |f(x)| \, dx \] This inequality holds for any function \( f(x) \). 3. **Equality condition**: The equality \( | \int_{a}^{b} f(x) \, dx | = \int_{a}^{b} |f(x)| \, dx \) holds if and only if \( f(x) \) does not change sign over the interval \( [a, b] \). This means \( f(x) \) is either non-negative or non-positive throughout the interval. 4. **Analyzing the implications**: If \( f(x) \) is non-negative, then \( f(x) \geq 0 \) for all \( x \in [a, b] \). If \( f(x) \) is non-positive, then \( f(x) \leq 0 \) for all \( x \in [a, b] \). 5. **Considering roots of \( f(x) \)**: If \( f(x) = 0 \) has a root in the interval \( [a, b] \), then there exists some \( c \in [a, b] \) such that \( f(c) = 0 \). This would imply that \( f(x) \) changes sign around \( c \) (i.e., it would be positive on one side and negative on the other), contradicting our earlier conclusion that \( f(x) \) does not change sign. 6. **Conclusion**: Therefore, if \( | \int_{a}^{b} f(x) \, dx | = \int_{a}^{b} |f(x)| \, dx \), it must be the case that \( f(x) = 0 \) has no roots in the interval \( [a, b] \). ### Final Statement: Thus, we conclude that if \( | \int_{a}^{b} f(x) \, dx | = \int_{a}^{b} |f(x)| \, dx \) for \( a < b \), then \( f(x) = 0 \) has no roots in the interval \( [a, b] \).

To solve the problem, we need to prove that if \[ | \int_{a}^{b} f(x) \, dx | = \int_{a}^{b} |f(x)| \, dx \] and \( a < b \), then \( f(x) = 0 \) has no roots in the interval \( [a, b] \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If | int_a ^b f(x) dx| = int_a ^b |f(x)| dx, a lt b , then f(x) = 0 has

int_(0)^(a)f(x)dx

int_(m)^(0)f(x)dx is

If int_(a)^(b)f(dx)dx=l_(1), int_(a)^(b)g(x)dx = l_(2) then :

If f(x)=f(a+b-x) for all x in[a,b] and int_(a)^(b) xf(x) dx=k int_(a)^(b) f(x) dx , then the value of k, is

Prove that int_a^bf(x)dx=int_(a+c)^(b+c)f(x-c)dx , and when f(x) is odd function, int_(-a)^af(x)dx=0

Let the definite integral be defined by the formula int_(a)^(b)f(x)dx=(b-a)/2(f(a)+f(b)) . For more accurate result, for c epsilon (a,b), we can use int_(a)^(b)f(x)dx=int_(a)^(c)f(x)dx+int_(c)^(b)f(x)dx=F(c) so that for c=(a+b)/2 we get int_(a)^(b)f(x)dx=(b-a)/4(f(a)+f(b)+2f(c)) . If f''(x)lt0 AA x epsilon (a,b) and c is a point such that altcltb , and (c,f(c)) is the point lying on the curve for which F(c) is maximum then f'(c) is equal to

Let int_(a)^(b)f(x)dx=int_(a+c)^(b+c)f(x-c)dx . Then the value of int_(0)^(pi)sin^(2010)x*cos^(2009)xdx is

STATEMENT-1 : int_(-2pi)^(5pi)cot^(-1)(tanx)dx=7(pi^(2))/(2) and STATEMENT-2 : int_(a)^(b)f(x)dx=int_(a)^(c )f(x)dx+int_(c )^(b)f(x)dx , a lt c lt b

Statement-1: int_(0)^(npi+v)|sin x|dx=2n+1-cos v where n in N and 0 le v lt pi . Stetement-2: If f(x) is a periodic function with period T, then (i) int_(0)^(nT) f(x)dx=n int_(0)^(T) f(x)dx , where n in N and (ii) int_(nT)^(nT+a) f(x)dx=int_(0)^(a) f(x) dx , where n in N

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. Let f(x)=int1^xsqrt(2-t^2)dtdot Then the real roots of the equation x^...

    Text Solution

    |

  2. If f((1)/(x)) +x^(2)f(x) =0, x gt0 and I= int(1//x)^(x) f(t)dt, (1)/(...

    Text Solution

    |

  3. If | int(a)^(b) f(x)dx|= int(a)^(b)|f(x)|dx,a ltb,"then " f(x)=0 has

    Text Solution

    |

  4. Let f(x) be an odd continous function which is periodic with period 2....

    Text Solution

    |

  5. All the value of d for which int(1)^(2){a^(2)+(4-4a)x+4x^(3)} d xle1...

    Text Solution

    |

  6. Let f(x) be a function defined by f(x)=int(1)^(x)t(t^(2)-3t+2)dt,1ltxl...

    Text Solution

    |

  7. If int(0)^(x){t}dt=int(0)^({x})t dt ("where" x gt0 neZ and and {*} rep...

    Text Solution

    |

  8. Let f(x)=max. {x+|x|,x-[x]} , where [x] denotes the greatest integer l...

    Text Solution

    |

  9. rArrint(0)^(oo) [(2)/(e^(x))]dx (where [*] denotes the greatest intege...

    Text Solution

    |

  10. Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint(b-1)^b(e^(-t)dt)/(...

    Text Solution

    |

  11. Evaluate: int(-1)^4f(x)dx=4a n dint2^4(3-f(x))dx=7, then find the val...

    Text Solution

    |

  12. For x epsilonR, and a continuous function f let I(1)=int(sin^(2)t)^(1+...

    Text Solution

    |

  13. int(1)^(4) log(e)[x]dx equals

    Text Solution

    |

  14. If [.] denotes greatest integer function, then the value of int(-pi//2...

    Text Solution

    |

  15. int(0)^(100pi)(sum(r=1)^(10)tanrx)dx is equal to

    Text Solution

    |

  16. If I(1)=int(0)^(pi//2) cos(sin x) dx,I(2)=int(0)^(pi//2) sin (cos x)...

    Text Solution

    |

  17. For any n in N, the value of the intergral int(0)^(pi) (sin 2nx)/(sin...

    Text Solution

    |

  18. For any n in N, int(0)^(pi) (sin^(2)nx)/(sin^(2)x)dx is equal to

    Text Solution

    |

  19. For any n in N, int(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

    Text Solution

    |

  20. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |