Home
Class 12
MATHS
If int(0)^(x){t}dt=int(0)^({x})t dt ("wh...

If `int_(0)^(x){t}dt=int_(0)^({x})t dt ("where" x gt0 neZ and and {*}` represents fractional part function), then

A

`x in (0,1)`

B

`[x]=1`

C

`x in (1,6)-I`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals given in the equation: \[ \int_{0}^{x} \{t\} dt = \int_{0}^{\{x\}} t dt \] where \(\{t\}\) denotes the fractional part of \(t\) and \(x > 0\) is not an integer. ### Step 1: Understand the fractional part function The fractional part of a number \(x\) is defined as: \[ \{x\} = x - \lfloor x \rfloor \] where \(\lfloor x \rfloor\) is the greatest integer less than or equal to \(x\). ### Step 2: Evaluate the left-hand side integral We need to evaluate the integral: \[ \int_{0}^{x} \{t\} dt \] Since \(x\) is not an integer, we can express \(x\) as: \[ x = n + f \quad \text{where } n = \lfloor x \rfloor \text{ and } f = \{x\} \] Thus, we can split the integral from \(0\) to \(x\) into two parts: \[ \int_{0}^{x} \{t\} dt = \int_{0}^{n} \{t\} dt + \int_{n}^{x} \{t\} dt \] For \(t\) in the interval \([0, n]\), \(\{t\} = t\), so: \[ \int_{0}^{n} \{t\} dt = \int_{0}^{n} t dt = \left[\frac{t^2}{2}\right]_{0}^{n} = \frac{n^2}{2} \] For \(t\) in the interval \([n, x]\), \(\{t\} = t - n\), so: \[ \int_{n}^{x} \{t\} dt = \int_{n}^{x} (t - n) dt = \int_{n}^{x} t dt - n\int_{n}^{x} dt \] Calculating these integrals: \[ \int_{n}^{x} t dt = \left[\frac{t^2}{2}\right]_{n}^{x} = \frac{x^2}{2} - \frac{n^2}{2} \] \[ \int_{n}^{x} dt = x - n \] Thus, \[ \int_{n}^{x} \{t\} dt = \left(\frac{x^2}{2} - \frac{n^2}{2}\right) - n(x - n) = \frac{x^2}{2} - \frac{n^2}{2} - nx + n^2 = \frac{x^2}{2} - nx + \frac{n^2}{2} \] Combining both parts: \[ \int_{0}^{x} \{t\} dt = \frac{n^2}{2} + \left(\frac{x^2}{2} - nx + \frac{n^2}{2}\right) = \frac{x^2}{2} - nx + n^2 \] ### Step 3: Evaluate the right-hand side integral Now we evaluate: \[ \int_{0}^{\{x\}} t dt \] Since \(\{x\} = f\): \[ \int_{0}^{f} t dt = \left[\frac{t^2}{2}\right]_{0}^{f} = \frac{f^2}{2} \] ### Step 4: Set the two integrals equal Setting the two integrals equal gives us: \[ \frac{x^2}{2} - nx + n^2 = \frac{f^2}{2} \] Substituting \(f = x - n\): \[ \frac{x^2}{2} - nx + n^2 = \frac{(x - n)^2}{2} \] Expanding the right side: \[ \frac{x^2}{2} - nx + n^2 = \frac{x^2 - 2nx + n^2}{2} \] Multiplying through by 2 to eliminate the fraction: \[ x^2 - 2nx + 2n^2 = x^2 - 2nx + n^2 \] This simplifies to: \[ 2n^2 = n^2 \implies n^2 = 0 \implies n = 0 \] Thus, \(x\) must lie in the interval \(0 < x < 1\). ### Conclusion The solution shows that for \(x > 0\) and \(x\) not being an integer, \(x\) must be in the interval \(0 < x < 1\).

To solve the problem, we need to evaluate the integrals given in the equation: \[ \int_{0}^{x} \{t\} dt = \int_{0}^{\{x\}} t dt \] where \(\{t\}\) denotes the fractional part of \(t\) and \(x > 0\) is not an integer. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_(0)^(x)|t-1|dt , where 0lexle2 , then

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

Find the value of int_(0)^(x){t}dt,x inR^(+) , here {.} denotes fractional part of 'x'.

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

int_(0)^(9)[sqrt(t)]dt .

If int_(0)^(x) f(t)dt=x^(2)+2x-int_(0)^(x) tf(t)dt, x in (0,oo) . Then, f(x) is

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

" If " f(x) =int_(0)^(x)" t sin t dt tehn " f(x) is

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. All the value of d for which int(1)^(2){a^(2)+(4-4a)x+4x^(3)} d xle1...

    Text Solution

    |

  2. Let f(x) be a function defined by f(x)=int(1)^(x)t(t^(2)-3t+2)dt,1ltxl...

    Text Solution

    |

  3. If int(0)^(x){t}dt=int(0)^({x})t dt ("where" x gt0 neZ and and {*} rep...

    Text Solution

    |

  4. Let f(x)=max. {x+|x|,x-[x]} , where [x] denotes the greatest integer l...

    Text Solution

    |

  5. rArrint(0)^(oo) [(2)/(e^(x))]dx (where [*] denotes the greatest intege...

    Text Solution

    |

  6. Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint(b-1)^b(e^(-t)dt)/(...

    Text Solution

    |

  7. Evaluate: int(-1)^4f(x)dx=4a n dint2^4(3-f(x))dx=7, then find the val...

    Text Solution

    |

  8. For x epsilonR, and a continuous function f let I(1)=int(sin^(2)t)^(1+...

    Text Solution

    |

  9. int(1)^(4) log(e)[x]dx equals

    Text Solution

    |

  10. If [.] denotes greatest integer function, then the value of int(-pi//2...

    Text Solution

    |

  11. int(0)^(100pi)(sum(r=1)^(10)tanrx)dx is equal to

    Text Solution

    |

  12. If I(1)=int(0)^(pi//2) cos(sin x) dx,I(2)=int(0)^(pi//2) sin (cos x)...

    Text Solution

    |

  13. For any n in N, the value of the intergral int(0)^(pi) (sin 2nx)/(sin...

    Text Solution

    |

  14. For any n in N, int(0)^(pi) (sin^(2)nx)/(sin^(2)x)dx is equal to

    Text Solution

    |

  15. For any n in N, int(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

    Text Solution

    |

  16. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  17. If I(n)=int(0)^(pi//4) tan^(n)x dx, then (1)/(I(2)+I(4)),(1)/(I(3)+I...

    Text Solution

    |

  18. Let f(x) be a function defined on R satisfyin f(x) =f(1-x) for all x...

    Text Solution

    |

  19. Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

    Text Solution

    |

  20. If f and g are continuous functions on [ 0, pi] satisfying f(x) +f(pi...

    Text Solution

    |