Home
Class 12
MATHS
rArrint(0)^(oo) [(2)/(e^(x))]dx (where [...

`rArrint_(0)^(oo) [(2)/(e^(x))]dx` (where [*] denotes the greatest integer function) equals

A

`log_(e)2`

B

` e^(2)`

C

0

D

`2//e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\infty} \left\lfloor \frac{2}{e^x} \right\rfloor dx \), we will break it down step by step. ### Step 1: Analyze the function \( \frac{2}{e^x} \) As \( x \) varies from \( 0 \) to \( \infty \): - At \( x = 0 \), \( \frac{2}{e^0} = 2 \). - As \( x \to \infty \), \( \frac{2}{e^x} \to 0 \). Thus, the function \( \frac{2}{e^x} \) decreases from \( 2 \) to \( 0 \) as \( x \) increases from \( 0 \) to \( \infty \). ### Step 2: Determine the range of \( \left\lfloor \frac{2}{e^x} \right\rfloor \) - For \( 0 \leq x < \ln(2) \): - \( \frac{2}{e^x} \geq 1 \) (since \( e^x < 2 \)). - Therefore, \( \left\lfloor \frac{2}{e^x} \right\rfloor = 1 \). - For \( x = \ln(2) \): - \( \frac{2}{e^{\ln(2)}} = 1 \). - Therefore, \( \left\lfloor \frac{2}{e^{\ln(2)}} \right\rfloor = 1 \). - For \( x > \ln(2) \): - \( \frac{2}{e^x} < 1 \) (since \( e^x > 2 \)). - Therefore, \( \left\lfloor \frac{2}{e^x} \right\rfloor = 0 \). ### Step 3: Break the integral into two parts Now we can break the integral into two parts: \[ I = \int_{0}^{\ln(2)} \left\lfloor \frac{2}{e^x} \right\rfloor dx + \int_{\ln(2)}^{\infty} \left\lfloor \frac{2}{e^x} \right\rfloor dx \] ### Step 4: Evaluate the first integral For \( x \) in the range \( [0, \ln(2)] \): \[ \int_{0}^{\ln(2)} \left\lfloor \frac{2}{e^x} \right\rfloor dx = \int_{0}^{\ln(2)} 1 \, dx = \left[ x \right]_{0}^{\ln(2)} = \ln(2) - 0 = \ln(2) \] ### Step 5: Evaluate the second integral For \( x \) in the range \( [\ln(2), \infty) \): \[ \int_{\ln(2)}^{\infty} \left\lfloor \frac{2}{e^x} \right\rfloor dx = \int_{\ln(2)}^{\infty} 0 \, dx = 0 \] ### Step 6: Combine results Combining the results from both integrals: \[ I = \ln(2) + 0 = \ln(2) \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{\infty} \left\lfloor \frac{2}{e^x} \right\rfloor dx = \ln(2) \]

To solve the integral \( I = \int_{0}^{\infty} \left\lfloor \frac{2}{e^x} \right\rfloor dx \), we will break it down step by step. ### Step 1: Analyze the function \( \frac{2}{e^x} \) As \( x \) varies from \( 0 \) to \( \infty \): - At \( x = 0 \), \( \frac{2}{e^0} = 2 \). - As \( x \to \infty \), \( \frac{2}{e^x} \to 0 \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(oo)[2e^(-x)]dx , where [.] deontes greatest integer function, is equal to

Evaluate int_(0)^(oo)[(3)/(x^(2)+1)]dx where [.] denotes the greatest integer function.

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

The value of int_(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greatest integer function of x) is equal to

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

Solve x^2-4-[x]=0 (where [] denotes the greatest integer function).

Solve x^2-4-[x]=0 (where [] denotes the greatest integer function).

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If int(0)^(x){t}dt=int(0)^({x})t dt ("where" x gt0 neZ and and {*} rep...

    Text Solution

    |

  2. Let f(x)=max. {x+|x|,x-[x]} , where [x] denotes the greatest integer l...

    Text Solution

    |

  3. rArrint(0)^(oo) [(2)/(e^(x))]dx (where [*] denotes the greatest intege...

    Text Solution

    |

  4. Ifint0^1(e^t dt)/(t+1)=a ,t h e ne v a l u a t eint(b-1)^b(e^(-t)dt)/(...

    Text Solution

    |

  5. Evaluate: int(-1)^4f(x)dx=4a n dint2^4(3-f(x))dx=7, then find the val...

    Text Solution

    |

  6. For x epsilonR, and a continuous function f let I(1)=int(sin^(2)t)^(1+...

    Text Solution

    |

  7. int(1)^(4) log(e)[x]dx equals

    Text Solution

    |

  8. If [.] denotes greatest integer function, then the value of int(-pi//2...

    Text Solution

    |

  9. int(0)^(100pi)(sum(r=1)^(10)tanrx)dx is equal to

    Text Solution

    |

  10. If I(1)=int(0)^(pi//2) cos(sin x) dx,I(2)=int(0)^(pi//2) sin (cos x)...

    Text Solution

    |

  11. For any n in N, the value of the intergral int(0)^(pi) (sin 2nx)/(sin...

    Text Solution

    |

  12. For any n in N, int(0)^(pi) (sin^(2)nx)/(sin^(2)x)dx is equal to

    Text Solution

    |

  13. For any n in N, int(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

    Text Solution

    |

  14. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  15. If I(n)=int(0)^(pi//4) tan^(n)x dx, then (1)/(I(2)+I(4)),(1)/(I(3)+I...

    Text Solution

    |

  16. Let f(x) be a function defined on R satisfyin f(x) =f(1-x) for all x...

    Text Solution

    |

  17. Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

    Text Solution

    |

  18. If f and g are continuous functions on [ 0, pi] satisfying f(x) +f(pi...

    Text Solution

    |

  19. If f(x) and g(x) are two continuous functions defined on [-a,a] then t...

    Text Solution

    |

  20. Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f...

    Text Solution

    |