Home
Class 12
MATHS
If I(1)=int(0)^(pi//2) cos(sin x) dx,I(2...

If `I_(1)=int_(0)^(pi//2) cos(sin x) dx,I_(2)=int_(0)^(pi//2) sin (cos x) dx and I_(3)=int_(0)^(pi//2) cos x dx` then

A

`I_(1)gtI_(3)gtI_(2)`

B

`I_(3)gtI_(1)gtI_(2)`

C

`I_(1)gtI_(2)gtI_(3)`

D

`I_(3)gtI_(2)gtI_(1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the three integrals \( I_1 \), \( I_2 \), and \( I_3 \): 1. **Define the Integrals**: - \( I_1 = \int_{0}^{\frac{\pi}{2}} \cos(\sin x) \, dx \) - \( I_2 = \int_{0}^{\frac{\pi}{2}} \sin(\cos x) \, dx \) - \( I_3 = \int_{0}^{\frac{\pi}{2}} \cos x \, dx \) 2. **Evaluate \( I_3 \)**: - The integral \( I_3 \) can be calculated directly: \[ I_3 = \int_{0}^{\frac{\pi}{2}} \cos x \, dx = [\sin x]_{0}^{\frac{\pi}{2}} = \sin\left(\frac{\pi}{2}\right) - \sin(0) = 1 - 0 = 1 \] 3. **Compare \( I_1 \) and \( I_2 \)**: - To compare \( I_1 \) and \( I_2 \), we will use the properties of the functions involved. - For \( x \in [0, \frac{\pi}{2}] \): - Since \( \sin x \) is increasing and \( \cos x \) is decreasing, we know: - \( \sin x < x \) for \( x > 0 \) - \( \cos x > \sin(\cos x) \) since \( \cos x \) is always positive in this interval. - Thus, we can conclude that: \[ \cos(\sin x) > \sin(\cos x) \] - Therefore, integrating both sides from \( 0 \) to \( \frac{\pi}{2} \): \[ I_1 > I_2 \] 4. **Combine the Results**: - We have established: - \( I_3 = 1 \) - \( I_1 > I_2 \) - To compare \( I_1 \) and \( I_3 \), we note that \( \cos(\sin x) \) is always greater than \( \cos x \) for \( x \in [0, \frac{\pi}{2}] \) since \( \sin x \) is always less than or equal to \( x \). - Therefore, we can conclude: \[ I_1 > I_3 \] 5. **Final Order**: - From the comparisons, we have: \[ I_1 > I_3 > I_2 \] Thus, the final result is: \[ I_1 > I_3 > I_2 \]

To solve the problem, we need to analyze the three integrals \( I_1 \), \( I_2 \), and \( I_3 \): 1. **Define the Integrals**: - \( I_1 = \int_{0}^{\frac{\pi}{2}} \cos(\sin x) \, dx \) - \( I_2 = \int_{0}^{\frac{\pi}{2}} \sin(\cos x) \, dx \) - \( I_3 = \int_{0}^{\frac{\pi}{2}} \cos x \, dx \) 2. **Evaluate \( I_3 \)**: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) cos 3x dx

int_(0)^(pi//2) x sin x cos x dx

int_(0)^(pi//2) x sinx cos x dx=?

int_(0)^(pi/2) cos^(2) x dx

int_(0)^(pi//2) x^(2) cos x dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi/2) cos 2x dx

If I_I=int_0^(pi//2)cos(sinx)dx ,I_2=int_0^(pi/2)sin(cosx)dx \ ,a n d \ I_3=int_0^(pi/2)cosx dx , then find the order in which the values I_1,I_2,I_3, exist.

(i) int_(0)^(pi//2) x sin x cos x dx (ii) int_(0)^(pi//6) (2+3x^(2)) cos 3x dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If [.] denotes greatest integer function, then the value of int(-pi//2...

    Text Solution

    |

  2. int(0)^(100pi)(sum(r=1)^(10)tanrx)dx is equal to

    Text Solution

    |

  3. If I(1)=int(0)^(pi//2) cos(sin x) dx,I(2)=int(0)^(pi//2) sin (cos x)...

    Text Solution

    |

  4. For any n in N, the value of the intergral int(0)^(pi) (sin 2nx)/(sin...

    Text Solution

    |

  5. For any n in N, int(0)^(pi) (sin^(2)nx)/(sin^(2)x)dx is equal to

    Text Solution

    |

  6. For any n in N, int(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

    Text Solution

    |

  7. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  8. If I(n)=int(0)^(pi//4) tan^(n)x dx, then (1)/(I(2)+I(4)),(1)/(I(3)+I...

    Text Solution

    |

  9. Let f(x) be a function defined on R satisfyin f(x) =f(1-x) for all x...

    Text Solution

    |

  10. Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

    Text Solution

    |

  11. If f and g are continuous functions on [ 0, pi] satisfying f(x) +f(pi...

    Text Solution

    |

  12. If f(x) and g(x) are two continuous functions defined on [-a,a] then t...

    Text Solution

    |

  13. Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f...

    Text Solution

    |

  14. The value of the integral int(0)^(pi//2) sin 2n x cot x dx, where n ...

    Text Solution

    |

  15. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  16. For any natural number n, theb value of rArr int(0)^(n^(2))[ sqrt(x)]d...

    Text Solution

    |

  17. The value of the integral int(a)^(a+pi//2) (|sin x|+|cosx|)dx is

    Text Solution

    |

  18. If rArrI(n)= int(a)^(a+pi//2)(cos^(2)nx)/(sinx) dx, "then" I(2)-I(1),I...

    Text Solution

    |

  19. Let f(x) be a polynomial of degree 2 satisfying f(0)=1, f(0) =-2 and f...

    Text Solution

    |

  20. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |