Home
Class 12
MATHS
For any n in N, the value of the intergr...

For any `n in N`, the value of the intergral `int_(0)^(pi) (sin 2nx)/(sinx)dx` is,

A

`pi`

B

`2pi`

C

`-pi`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} \frac{\sin(2nx)}{\sin(x)} \, dx \) for any \( n \in \mathbb{N} \), we will evaluate it step by step. ### Step 1: Define the Integral Let \[ I = \int_{0}^{\pi} \frac{\sin(2nx)}{\sin(x)} \, dx \] ### Step 2: Evaluate for \( n = 1 \) For \( n = 1 \): \[ I_1 = \int_{0}^{\pi} \frac{\sin(2x)}{\sin(x)} \, dx \] Using the identity \( \sin(2x) = 2 \sin(x) \cos(x) \): \[ I_1 = \int_{0}^{\pi} \frac{2 \sin(x) \cos(x)}{\sin(x)} \, dx = 2 \int_{0}^{\pi} \cos(x) \, dx \] The integral of \( \cos(x) \) from \( 0 \) to \( \pi \) is: \[ \int_{0}^{\pi} \cos(x) \, dx = [\sin(x)]_{0}^{\pi} = \sin(\pi) - \sin(0) = 0 \] Thus, \[ I_1 = 2 \cdot 0 = 0 \] ### Step 3: Evaluate for \( n = 2 \) For \( n = 2 \): \[ I_2 = \int_{0}^{\pi} \frac{\sin(4x)}{\sin(x)} \, dx \] Using the identity \( \sin(4x) = 2 \sin(2x) \cos(2x) \): \[ I_2 = \int_{0}^{\pi} \frac{2 \sin(2x) \cos(2x)}{\sin(x)} \, dx \] Using \( \sin(2x) = 2 \sin(x) \cos(x) \): \[ I_2 = 2 \int_{0}^{\pi} \frac{2 \sin(x) \cos(x) \cos(2x)}{\sin(x)} \, dx = 4 \int_{0}^{\pi} \cos(x) \cos(2x) \, dx \] Using the product-to-sum identities: \[ \cos(x) \cos(2x) = \frac{1}{2} [\cos(x) + \cos(3x)] \] Thus, \[ I_2 = 4 \cdot \frac{1}{2} \left( \int_{0}^{\pi} \cos(x) \, dx + \int_{0}^{\pi} \cos(3x) \, dx \right) \] Both integrals evaluate to zero: \[ \int_{0}^{\pi} \cos(x) \, dx = 0, \quad \int_{0}^{\pi} \cos(3x) \, dx = 0 \] Thus, \[ I_2 = 0 \] ### Step 4: General Case for \( n \) By observing the pattern, we see that for any \( n \in \mathbb{N} \): \[ I_n = 0 \] This is because each integral \( I_n \) evaluates to zero due to the periodic nature of the sine and cosine functions over the interval \( [0, \pi] \). ### Conclusion Therefore, the value of the integral \[ \int_{0}^{\pi} \frac{\sin(2nx)}{\sin(x)} \, dx = 0 \quad \text{for any } n \in \mathbb{N}. \]

To solve the integral \( I = \int_{0}^{\pi} \frac{\sin(2nx)}{\sin(x)} \, dx \) for any \( n \in \mathbb{N} \), we will evaluate it step by step. ### Step 1: Define the Integral Let \[ I = \int_{0}^{\pi} \frac{\sin(2nx)}{\sin(x)} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(pi)(sin 6x)/(sinx) dx .

The value of the definite integral, int_0^(pi/2) (sin5x)/sinx dx is

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

For any n in R^(+) , the value of the integral int_(0)^(n[x]) (x-[x])dx is

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

Find the value of the following: int_0^(pi/4) (1+sin2x)/(cosx+sinx)dx

For any natural number n, the value of the integral int_(0)^(sqrt(n)) [x^(2)]dx is

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

The value of the definite integral int_0^(pi/2) ((1+sin3x)/(1+2sinx)) dx equals to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. int(0)^(100pi)(sum(r=1)^(10)tanrx)dx is equal to

    Text Solution

    |

  2. If I(1)=int(0)^(pi//2) cos(sin x) dx,I(2)=int(0)^(pi//2) sin (cos x)...

    Text Solution

    |

  3. For any n in N, the value of the intergral int(0)^(pi) (sin 2nx)/(sin...

    Text Solution

    |

  4. For any n in N, int(0)^(pi) (sin^(2)nx)/(sin^(2)x)dx is equal to

    Text Solution

    |

  5. For any n in N, int(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

    Text Solution

    |

  6. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  7. If I(n)=int(0)^(pi//4) tan^(n)x dx, then (1)/(I(2)+I(4)),(1)/(I(3)+I...

    Text Solution

    |

  8. Let f(x) be a function defined on R satisfyin f(x) =f(1-x) for all x...

    Text Solution

    |

  9. Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

    Text Solution

    |

  10. If f and g are continuous functions on [ 0, pi] satisfying f(x) +f(pi...

    Text Solution

    |

  11. If f(x) and g(x) are two continuous functions defined on [-a,a] then t...

    Text Solution

    |

  12. Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f...

    Text Solution

    |

  13. The value of the integral int(0)^(pi//2) sin 2n x cot x dx, where n ...

    Text Solution

    |

  14. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  15. For any natural number n, theb value of rArr int(0)^(n^(2))[ sqrt(x)]d...

    Text Solution

    |

  16. The value of the integral int(a)^(a+pi//2) (|sin x|+|cosx|)dx is

    Text Solution

    |

  17. If rArrI(n)= int(a)^(a+pi//2)(cos^(2)nx)/(sinx) dx, "then" I(2)-I(1),I...

    Text Solution

    |

  18. Let f(x) be a polynomial of degree 2 satisfying f(0)=1, f(0) =-2 and f...

    Text Solution

    |

  19. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  20. f(x)=int0^x f(t) dt=x+intx^1 tf(t)dt, then the value of f(1) is

    Text Solution

    |