Home
Class 12
MATHS
For any n in N, int(0)^(pi) (sin (2n+1)x...

For any `n in N, int_(0)^(pi) (sin (2n+1)x)/(sinx)dx` is equal to

A

`pi`

B

0

C

`n pi`

D

`(2n+1)=pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I_n = \int_0^{\pi} \frac{\sin(2n+1)x}{\sin x} \, dx \), we will use a recursive approach. ### Step 1: Define the Integral Let \[ I_n = \int_0^{\pi} \frac{\sin(2n+1)x}{\sin x} \, dx \] ### Step 2: Write the Next Integral We can express \( I_{n+1} \) as follows: \[ I_{n+1} = \int_0^{\pi} \frac{\sin(2(n+1)+1)x}{\sin x} \, dx = \int_0^{\pi} \frac{\sin(2n+3)x}{\sin x} \, dx \] ### Step 3: Subtract the Two Integrals Now, we will subtract \( I_n \) from \( I_{n+1} \): \[ I_{n+1} - I_n = \int_0^{\pi} \left( \frac{\sin(2n+3)x - \sin(2n+1)x}{\sin x} \right) \, dx \] ### Step 4: Use the Sine Difference Formula Using the sine difference formula: \[ \sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] we have: \[ \sin(2n+3)x - \sin(2n+1)x = 2 \cos\left((2n+3 + 2n+1)x/2\right) \sin\left((2n+3 - (2n+1))x/2\right) \] This simplifies to: \[ = 2 \cos((4n+4)x/2) \sin(x) \] Thus, \[ I_{n+1} - I_n = \int_0^{\pi} \frac{2 \cos((2n+2)x) \sin x}{\sin x} \, dx = 2 \int_0^{\pi} \cos((2n+2)x) \, dx \] ### Step 5: Evaluate the Integral The integral \( \int_0^{\pi} \cos((2n+2)x) \, dx \) evaluates to: - If \( 2n+2 \neq 0 \), it equals \( 0 \). - If \( 2n+2 = 0 \), which is not possible for \( n \in \mathbb{N} \). Thus, we have: \[ I_{n+1} - I_n = 0 \quad \Rightarrow \quad I_{n+1} = I_n \] ### Step 6: Base Case Now we can find a base case. Let’s calculate \( I_1 \): \[ I_1 = \int_0^{\pi} \frac{\sin(3x)}{\sin x} \, dx \] Using the identity \( \sin(3x) = 3\sin x - 4\sin^3 x \): \[ I_1 = \int_0^{\pi} \frac{3\sin x - 4\sin^3 x}{\sin x} \, dx = \int_0^{\pi} (3 - 4\sin^2 x) \, dx \] ### Step 7: Evaluate \( I_1 \) Now, we can evaluate: \[ I_1 = \int_0^{\pi} 3 \, dx - 4 \int_0^{\pi} \sin^2 x \, dx \] The first integral evaluates to: \[ 3 \cdot \pi \] The second integral can be computed using: \[ \int_0^{\pi} \sin^2 x \, dx = \frac{\pi}{2} \] Thus: \[ I_1 = 3\pi - 4 \cdot \frac{\pi}{2} = 3\pi - 2\pi = \pi \] ### Conclusion Since \( I_n = I_1 \) for all \( n \in \mathbb{N} \), we conclude: \[ I_n = \pi \] ### Final Answer \[ \int_0^{\pi} \frac{\sin(2n+1)x}{\sin x} \, dx = \pi \]

To solve the integral \( I_n = \int_0^{\pi} \frac{\sin(2n+1)x}{\sin x} \, dx \), we will use a recursive approach. ### Step 1: Define the Integral Let \[ I_n = \int_0^{\pi} \frac{\sin(2n+1)x}{\sin x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

For any n in N, int_(0)^(pi) (sin^(2)nx)/(sin^(2)x)dx is equal to

int_(0)^((pi)/(2))(sin^(3)x)/(sinx+cosx)dx is equal to

If n=2m+1,m in N uu {0}, then int_0^(pi/2)(sin nx)/(sin x) dx is equal to (i) pi (ii) pi/2 (iii) pi/4 (iv) none of these

The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

Let m be any integer. Then, the integral int_(0)^(pi) (sin 2m x)/(sin x)dx equals

For any n in N , the value of the intergral int_(0)^(pi) (sin 2nx)/(sinx)dx is,

Statement-1:For any n in N , we have int_(0)^(npi) |(sinx)/(x)|dx ge (2)/(pi)(1+(1)/(2)+(1)/(3)+....+(1)/(n)) Statement-2: (sin x)/(x)ge(2)/(pi)"on"(0,(pi)/(2))

Prove that I_(1),I_(2),I_(3)"..." form an AP, if I_(n)=int_(0)^(pi)(sin2nx)/(sinx)dx .

If I_n = int_0^(pi/2) (sin^2 nx)/(sin^2 x) dx , then

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. For any n in N, the value of the intergral int(0)^(pi) (sin 2nx)/(sin...

    Text Solution

    |

  2. For any n in N, int(0)^(pi) (sin^(2)nx)/(sin^(2)x)dx is equal to

    Text Solution

    |

  3. For any n in N, int(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

    Text Solution

    |

  4. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  5. If I(n)=int(0)^(pi//4) tan^(n)x dx, then (1)/(I(2)+I(4)),(1)/(I(3)+I...

    Text Solution

    |

  6. Let f(x) be a function defined on R satisfyin f(x) =f(1-x) for all x...

    Text Solution

    |

  7. Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

    Text Solution

    |

  8. If f and g are continuous functions on [ 0, pi] satisfying f(x) +f(pi...

    Text Solution

    |

  9. If f(x) and g(x) are two continuous functions defined on [-a,a] then t...

    Text Solution

    |

  10. Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f...

    Text Solution

    |

  11. The value of the integral int(0)^(pi//2) sin 2n x cot x dx, where n ...

    Text Solution

    |

  12. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  13. For any natural number n, theb value of rArr int(0)^(n^(2))[ sqrt(x)]d...

    Text Solution

    |

  14. The value of the integral int(a)^(a+pi//2) (|sin x|+|cosx|)dx is

    Text Solution

    |

  15. If rArrI(n)= int(a)^(a+pi//2)(cos^(2)nx)/(sinx) dx, "then" I(2)-I(1),I...

    Text Solution

    |

  16. Let f(x) be a polynomial of degree 2 satisfying f(0)=1, f(0) =-2 and f...

    Text Solution

    |

  17. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  18. f(x)=int0^x f(t) dt=x+intx^1 tf(t)dt, then the value of f(1) is

    Text Solution

    |

  19. If f(x)= int0^(sinx) cos^(-1)t dt +int(0)^(cosx) sin^(-1)t dt, 0 lt ...

    Text Solution

    |

  20. Let f(x) be a continous function such that int(m)^(n+1) f(x) dx =n^(3)...

    Text Solution

    |