Home
Class 12
MATHS
If I(n)=int(0)^(pi//4) tan^(n)x dx, then...

If `I_(n)=int_(0)^(pi//4) tan^(n)x dx`, then
`(1)/(I_(2)+I_(4)),(1)/(I_(3)+I_(5)),(1)/(I_(4)+I_(6)),...` from\

A

am A.P.

B

a G.P.

C

a H.P.

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \) and analyze the series formed by \( \frac{1}{I_2 + I_4}, \frac{1}{I_3 + I_5}, \frac{1}{I_4 + I_6}, \ldots \). ### Step-by-step Solution: 1. **Define the Integrals**: We start with the integral defined as: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \] 2. **Relate \( I_n \) and \( I_{n+2} \)**: We can express \( I_n + I_{n+2} \): \[ I_n + I_{n+2} = \int_0^{\frac{\pi}{4}} \tan^n x \, dx + \int_0^{\frac{\pi}{4}} \tan^{n+2} x \, dx \] This can be combined into a single integral: \[ I_n + I_{n+2} = \int_0^{\frac{\pi}{4}} \tan^n x (1 + \tan^2 x) \, dx \] 3. **Use the Identity**: We know that \( 1 + \tan^2 x = \sec^2 x \). Thus, we can rewrite the integral: \[ I_n + I_{n+2} = \int_0^{\frac{\pi}{4}} \tan^n x \sec^2 x \, dx \] 4. **Substitution**: Let \( t = \tan x \). Then, \( dt = \sec^2 x \, dx \) and when \( x = 0 \), \( t = 0 \) and when \( x = \frac{\pi}{4} \), \( t = 1 \). The integral becomes: \[ I_n + I_{n+2} = \int_0^1 t^n \, dt \] 5. **Evaluate the Integral**: The integral \( \int_0^1 t^n \, dt \) can be evaluated as: \[ \int_0^1 t^n \, dt = \frac{t^{n+1}}{n+1} \bigg|_0^1 = \frac{1}{n+1} \] Therefore, we have: \[ I_n + I_{n+2} = \frac{1}{n+1} \] 6. **Reciprocal Relation**: Taking the reciprocal gives: \[ \frac{1}{I_n + I_{n+2}} = n + 1 \] 7. **Calculate Specific Cases**: - For \( n = 2 \): \[ \frac{1}{I_2 + I_4} = 3 \] - For \( n = 3 \): \[ \frac{1}{I_3 + I_5} = 4 \] - For \( n = 4 \): \[ \frac{1}{I_4 + I_6} = 5 \] 8. **Identify the Sequence**: The values obtained are: \[ 3, 4, 5, \ldots \] This sequence is an arithmetic progression (AP) with a common difference of 1. ### Conclusion: Thus, the series \( \frac{1}{I_2 + I_4}, \frac{1}{I_3 + I_5}, \frac{1}{I_4 + I_6}, \ldots \) forms an arithmetic progression (AP).

To solve the problem, we need to evaluate the integrals \( I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \) and analyze the series formed by \( \frac{1}{I_2 + I_4}, \frac{1}{I_3 + I_5}, \frac{1}{I_4 + I_6}, \ldots \). ### Step-by-step Solution: 1. **Define the Integrals**: We start with the integral defined as: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

If I_(n)=int_(0)^(pi//4) tan^(n)theta d theta , then I_(8)+I_(6) equals

If I_(n)=int_(0)^(pi) e^(x)sin^(n)x " dx then " (I_(3))/(I_(1)) is equal to

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

If I_n=int_0^(pi//4)tan^("n")x dx , prove that I_n+I_(n-2)=1/(n-1)dot

If I_n=int_0^(pi//4)tan^n x dx , show that 1/(I_2+I_4),1/(I_3+I_5),1/(I_4+I_6),1/(I_5+I_7), form an A.P. Find the common difference of this progression.

If I_(n)=int_(0)^(pi) e^(x)(sinx)^(n)dx , then (I_(3))/(I_(1)) is equal to

If rArrI_(n)= int_(a)^(a+pi//2)(cos^(2)nx)/(sinx) dx, "then" I_(2)-I_(1),I_(3)-I_(2),I_(4)-I_(3) are in

I_n = int_0^(pi/4) tan^n x dx , then the value of n(l_(n-1) + I_(n+1)) is

If I_(n)=int_(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then (a) I_(n)+I_(n-2)=1/(n+1) (b) I_(n)+I_(n-2)=1/(n-1) (c) I_(2)+I_(4),I_(6),……. are in H.P. (d) 1/(2(n+1))ltI_(n)lt1/(2(n-1))

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. For any n in N, int(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

    Text Solution

    |

  2. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  3. If I(n)=int(0)^(pi//4) tan^(n)x dx, then (1)/(I(2)+I(4)),(1)/(I(3)+I...

    Text Solution

    |

  4. Let f(x) be a function defined on R satisfyin f(x) =f(1-x) for all x...

    Text Solution

    |

  5. Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

    Text Solution

    |

  6. If f and g are continuous functions on [ 0, pi] satisfying f(x) +f(pi...

    Text Solution

    |

  7. If f(x) and g(x) are two continuous functions defined on [-a,a] then t...

    Text Solution

    |

  8. Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f...

    Text Solution

    |

  9. The value of the integral int(0)^(pi//2) sin 2n x cot x dx, where n ...

    Text Solution

    |

  10. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  11. For any natural number n, theb value of rArr int(0)^(n^(2))[ sqrt(x)]d...

    Text Solution

    |

  12. The value of the integral int(a)^(a+pi//2) (|sin x|+|cosx|)dx is

    Text Solution

    |

  13. If rArrI(n)= int(a)^(a+pi//2)(cos^(2)nx)/(sinx) dx, "then" I(2)-I(1),I...

    Text Solution

    |

  14. Let f(x) be a polynomial of degree 2 satisfying f(0)=1, f(0) =-2 and f...

    Text Solution

    |

  15. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  16. f(x)=int0^x f(t) dt=x+intx^1 tf(t)dt, then the value of f(1) is

    Text Solution

    |

  17. If f(x)= int0^(sinx) cos^(-1)t dt +int(0)^(cosx) sin^(-1)t dt, 0 lt ...

    Text Solution

    |

  18. Let f(x) be a continous function such that int(m)^(n+1) f(x) dx =n^(3)...

    Text Solution

    |

  19. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  20. If int(0)^(1) x e^(x^(2) ) dx=alpha int(0)^(1) e^(x^(2)) dx, then

    Text Solution

    |