Home
Class 12
MATHS
Let f(x) be a function defined on R sati...

Let f(x) be a function defined on R satisfyin `f(x) =f(1-x)` for all ` x in R`. Then `int_(-1//2)^(1//2) f(x+(1)/(2))sin x dx` equals

A

`underset(-1//2)overset(1//2)int f(x+(1)/(2))sin x dx`

B

`2underset(-1//2)overset(1//2)int f(x+(1)/(2))sin x dx`

C

`f(x) sind x dx`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral \( I = \int_{-\frac{1}{2}}^{\frac{1}{2}} f\left(x + \frac{1}{2}\right) \sin x \, dx \), where \( f(x) = f(1 - x) \), we will follow these steps: ### Step 1: Change of Variable Let's first perform a change of variable in the integral. We will let \( u = x + \frac{1}{2} \). Then, we have: \[ du = dx \quad \text{and} \quad x = u - \frac{1}{2} \] The limits of integration change as follows: - When \( x = -\frac{1}{2} \), \( u = 0 \). - When \( x = \frac{1}{2} \), \( u = 1 \). Thus, the integral becomes: \[ I = \int_{0}^{1} f(u) \sin\left(u - \frac{1}{2}\right) \, du \] ### Step 2: Use the Property of \( f(x) \) Using the property \( f(x) = f(1 - x) \), we can express \( f(u) \) in terms of \( f(1 - u) \): \[ I = \int_{0}^{1} f(1 - u) \sin\left(u - \frac{1}{2}\right) \, du \] ### Step 3: Change of Variable in the Integral Now, we will change the variable again. Let \( v = 1 - u \). Then, \( du = -dv \) and the limits change as follows: - When \( u = 0 \), \( v = 1 \). - When \( u = 1 \), \( v = 0 \). Thus, the integral becomes: \[ I = \int_{1}^{0} f(v) \sin\left(1 - v - \frac{1}{2}\right)(-dv) = \int_{0}^{1} f(v) \sin\left(\frac{1}{2} - v\right) \, dv \] ### Step 4: Combine the Integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{1} f(u) \sin\left(u - \frac{1}{2}\right) \, du \) 2. \( I = \int_{0}^{1} f(v) \sin\left(\frac{1}{2} - v\right) \, dv \) ### Step 5: Add the Two Integrals Adding these two integrals: \[ 2I = \int_{0}^{1} f(u) \left(\sin\left(u - \frac{1}{2}\right) + \sin\left(\frac{1}{2} - u\right)\right) \, du \] Using the identity \( \sin(a) + \sin(b) = 2 \sin\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right) \): \[ \sin\left(u - \frac{1}{2}\right) + \sin\left(\frac{1}{2} - u\right) = 2 \sin\left(0\right) \cos\left(u - \frac{1}{2}\right) = 0 \] Thus: \[ 2I = 0 \implies I = 0 \] ### Conclusion Therefore, we conclude that: \[ \int_{-\frac{1}{2}}^{\frac{1}{2}} f\left(x + \frac{1}{2}\right) \sin x \, dx = 0 \]

To solve the given integral \( I = \int_{-\frac{1}{2}}^{\frac{1}{2}} f\left(x + \frac{1}{2}\right) \sin x \, dx \), where \( f(x) = f(1 - x) \), we will follow these steps: ### Step 1: Change of Variable Let's first perform a change of variable in the integral. We will let \( u = x + \frac{1}{2} \). Then, we have: \[ du = dx \quad \text{and} \quad x = u - \frac{1}{2} \] The limits of integration change as follows: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let f: R->R be the function defined by f(x)=4x-3 for all x in R . Then write f^(-1) .

Let f: R-> R be the function defined by f(x)=4x−3 for all x in R . Then write f^-1 .

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to

Let f:R->R be a function defined by f(x)=x^2-(x^2)/(1+x^2) . Then:

Let f : R → R be a function defined by f ( x ) = 2 x − 5 ∀ x ∈ R . Then Write f^(−1) .

Let f:R rarr R be a function defined as f(x)=(x^(2)-6)/(x^(2)+2) , then f is

Let f (x) be function defined on [0,1] such that f (1)=0 and for any a in (0,1], int _(0)^(a) f (x) dx - int _(a)^(1) f (x) dx =2 f (a) +3a +b where b is constant. The length of the subtangent of the curve y= f (x ) at x=1//2 is:

Let f(x) is differentiable function satisfying 2int_(1)^(2)f(tx) dt = x+2, AA x in R Then int_(1)^(2)(8f(8x)-f(x)-21x) dx equal to

Let f :R->R be a function defined by f(x)=|x] for all x in R and let A = [0, 1), then f^-1 (A) equals

Let f:R to R be the function defined by f(x) = (1)/(2-cos x), AA x in R. Then, find the range of f .

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  2. If I(n)=int(0)^(pi//4) tan^(n)x dx, then (1)/(I(2)+I(4)),(1)/(I(3)+I...

    Text Solution

    |

  3. Let f(x) be a function defined on R satisfyin f(x) =f(1-x) for all x...

    Text Solution

    |

  4. Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

    Text Solution

    |

  5. If f and g are continuous functions on [ 0, pi] satisfying f(x) +f(pi...

    Text Solution

    |

  6. If f(x) and g(x) are two continuous functions defined on [-a,a] then t...

    Text Solution

    |

  7. Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f...

    Text Solution

    |

  8. The value of the integral int(0)^(pi//2) sin 2n x cot x dx, where n ...

    Text Solution

    |

  9. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  10. For any natural number n, theb value of rArr int(0)^(n^(2))[ sqrt(x)]d...

    Text Solution

    |

  11. The value of the integral int(a)^(a+pi//2) (|sin x|+|cosx|)dx is

    Text Solution

    |

  12. If rArrI(n)= int(a)^(a+pi//2)(cos^(2)nx)/(sinx) dx, "then" I(2)-I(1),I...

    Text Solution

    |

  13. Let f(x) be a polynomial of degree 2 satisfying f(0)=1, f(0) =-2 and f...

    Text Solution

    |

  14. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  15. f(x)=int0^x f(t) dt=x+intx^1 tf(t)dt, then the value of f(1) is

    Text Solution

    |

  16. If f(x)= int0^(sinx) cos^(-1)t dt +int(0)^(cosx) sin^(-1)t dt, 0 lt ...

    Text Solution

    |

  17. Let f(x) be a continous function such that int(m)^(n+1) f(x) dx =n^(3)...

    Text Solution

    |

  18. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  19. If int(0)^(1) x e^(x^(2) ) dx=alpha int(0)^(1) e^(x^(2)) dx, then

    Text Solution

    |

  20. If I=int(0)^(1) (1+e^(-x^2)) dx then, s

    Text Solution

    |