Home
Class 12
MATHS
If f(x) and g(x) are two continuous func...

If f(x) and g(x) are two continuous functions defined on [-a,a] then the the value of `int_(-a)^(a) {f(x)f+(-x) } {g(x)-g(-x)}dx` is,

A

2a

B

f(a) g(a)

C

a

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-a}^{a} (f(x) + f(-x))(g(x) - g(-x)) \, dx \), we will follow these steps: ### Step 1: Define the Integral Let: \[ I = \int_{-a}^{a} (f(x) + f(-x))(g(x) - g(-x)) \, dx \] ### Step 2: Apply the Property of Integrals We can use the property of integrals that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] In our case, we will apply this property to the integral \( I \). ### Step 3: Substitute in the Integral Using the property, we can rewrite the integral: \[ I = \int_{-a}^{a} (f(-x) + f(x))(g(-x) - g(x)) \, dx \] ### Step 4: Change of Variables Now, let’s change the variable \( x \) to \( -x \): \[ I = \int_{-a}^{a} (f(-x) + f(x))(g(-x) - g(x)) \, dx \] This gives us a new expression for \( I \): \[ I = \int_{-a}^{a} (f(-x) + f(x))(g(-x) - g(x)) \, dx \] ### Step 5: Combine the Two Expressions Now we have two expressions for \( I \): 1. \( I = \int_{-a}^{a} (f(x) + f(-x))(g(x) - g(-x)) \, dx \) 2. \( I = \int_{-a}^{a} (f(-x) + f(x))(g(-x) - g(x)) \, dx \) Adding these two equations: \[ 2I = \int_{-a}^{a} (f(x) + f(-x)) \left( (g(x) - g(-x)) + (g(-x) - g(x)) \right) \, dx \] ### Step 6: Simplify the Expression Notice that the terms \( (g(x) - g(-x)) + (g(-x) - g(x)) \) cancel each other out: \[ (g(x) - g(-x)) + (g(-x) - g(x)) = 0 \] Thus, we have: \[ 2I = \int_{-a}^{a} (f(x) + f(-x)) \cdot 0 \, dx = 0 \] ### Step 7: Solve for \( I \) Since \( 2I = 0 \), we conclude: \[ I = 0 \] ### Final Answer The value of the integral is: \[ \int_{-a}^{a} (f(x) + f(-x))(g(x) - g(-x)) \, dx = 0 \]

To solve the integral \( I = \int_{-a}^{a} (f(x) + f(-x))(g(x) - g(-x)) \, dx \), we will follow these steps: ### Step 1: Define the Integral Let: \[ I = \int_{-a}^{a} (f(x) + f(-x))(g(x) - g(-x)) \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Property 8: If f(x) is a continuous function defined on [-a; a] then int_(-a) ^a f(x) dx = int_0 ^a {f(x) + f(-x)} dx

If f(x) and g(x) are continuous functions, then int_(In lamda)^(In (1//lamda))(f(x^(2)//4)[f(x)-f(-x)])/(g(x^(2)//4)[g(x)+g(-x)])dx is

Suppose f(x) and g(x) are two continuous functions defined for 0<=x<=1 .Given, f(x)=int_0^1 e^(x+1) .f(t) dt and g(x)=int_0^1 e^(x+1) *g(t) dt+x The value of f( 1) equals

The value of int [f(x)g''(x) - f''(x)g(x)] dx is equal to

If intg(x)dx=g(x) , then the value of the integral intf(x)g(x){f(x)+2f'(x)}dx is

Let f(x) and g(x) be two functions satisfying f(x^(2))+g(4-x)=4x^(3), g(4-x)+g(x)=0 , then the value of int_(-4)^(4)f(x^(2))dx is :

If the functions f(x) and g(x) are continuous on [a,b] and differentiable on (a,b) then in the interval (a,b) the equation |{:(f'(x),f(a)),(g'(x),g(a)):}|=(1)/(a-b)=|{:(f(a),f(b)),(g(a),g(b)):}|

Let f(x)a n dg(x) be two continuous functions defined from RvecR , such that f(x_1) > f(x_2) and g(x_1) x_2 dot Then what is the solution set of f(g(alpha^2-2alpha) > f(g(3alpha-4))

Prove that int_(0)^(a)f(x)g(a-x)dx=int_(0)^(a)g(x)f(a-x)dx .

if f(x) and g(x) are continuous functions, fog is identity function, g'(b) = 5 and g(b) = a then f'(a) is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

    Text Solution

    |

  2. If f and g are continuous functions on [ 0, pi] satisfying f(x) +f(pi...

    Text Solution

    |

  3. If f(x) and g(x) are two continuous functions defined on [-a,a] then t...

    Text Solution

    |

  4. Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f...

    Text Solution

    |

  5. The value of the integral int(0)^(pi//2) sin 2n x cot x dx, where n ...

    Text Solution

    |

  6. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  7. For any natural number n, theb value of rArr int(0)^(n^(2))[ sqrt(x)]d...

    Text Solution

    |

  8. The value of the integral int(a)^(a+pi//2) (|sin x|+|cosx|)dx is

    Text Solution

    |

  9. If rArrI(n)= int(a)^(a+pi//2)(cos^(2)nx)/(sinx) dx, "then" I(2)-I(1),I...

    Text Solution

    |

  10. Let f(x) be a polynomial of degree 2 satisfying f(0)=1, f(0) =-2 and f...

    Text Solution

    |

  11. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  12. f(x)=int0^x f(t) dt=x+intx^1 tf(t)dt, then the value of f(1) is

    Text Solution

    |

  13. If f(x)= int0^(sinx) cos^(-1)t dt +int(0)^(cosx) sin^(-1)t dt, 0 lt ...

    Text Solution

    |

  14. Let f(x) be a continous function such that int(m)^(n+1) f(x) dx =n^(3)...

    Text Solution

    |

  15. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  16. If int(0)^(1) x e^(x^(2) ) dx=alpha int(0)^(1) e^(x^(2)) dx, then

    Text Solution

    |

  17. If I=int(0)^(1) (1+e^(-x^2)) dx then, s

    Text Solution

    |

  18. If I= int(0)^(1)(x)/(8+x^(3))dx then the smallest interval is which I ...

    Text Solution

    |

  19. Letf :R rarr R be a continous function given by f(x+y)=f(x)f(y) "for a...

    Text Solution

    |

  20. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |