Home
Class 12
MATHS
Let f (x) be a conitnuous function defin...

Let f (x) be a conitnuous function defined on [0,a] such that `f(a-x)=f(x)"for all" x in [ 0,a]`. If ` int_(0)^(a//2) f(x) dx=alpha,` then `int _(0)^(a) f(x) dx` is equal to

A

`alpha`

B

`2 alpha`

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int_0^a f(x) \, dx \) given the condition \( f(a - x) = f(x) \) for all \( x \) in the interval \([0, a]\) and the information that \( \int_0^{a/2} f(x) \, dx = \alpha \). ### Step-by-Step Solution: 1. **Define the Integral**: Let \( I = \int_0^a f(x) \, dx \). 2. **Use the Property of the Function**: Given that \( f(a - x) = f(x) \), we can change the variable in the integral: \[ \int_0^a f(a - x) \, dx = \int_0^a f(x) \, dx = I \] 3. **Change of Variable**: Let \( u = a - x \). Then, \( du = -dx \). When \( x = 0 \), \( u = a \) and when \( x = a \), \( u = 0 \). Thus, we have: \[ \int_0^a f(a - x) \, dx = \int_a^0 f(u) (-du) = \int_0^a f(u) \, du = I \] 4. **Split the Integral**: Now we can express \( I \) as: \[ I = \int_0^{a/2} f(x) \, dx + \int_{a/2}^a f(x) \, dx \] 5. **Evaluate the Second Integral**: For the second integral, we can use the property of the function again: \[ \int_{a/2}^a f(x) \, dx = \int_{a/2}^a f(a - (a - x)) \, dx = \int_{a/2}^a f(a - x) \, dx \] By changing the variable \( v = a - x \), we have \( dv = -dx \), and when \( x = a/2 \), \( v = a/2 \) and when \( x = a \), \( v = 0 \): \[ \int_{a/2}^a f(a - x) \, dx = \int_{a/2}^0 f(v) (-dv) = \int_0^{a/2} f(v) \, dv = \int_0^{a/2} f(x) \, dx \] 6. **Combine the Results**: Thus, we can write: \[ I = \int_0^{a/2} f(x) \, dx + \int_0^{a/2} f(x) \, dx = 2 \int_0^{a/2} f(x) \, dx \] 7. **Substitute the Given Value**: We know that \( \int_0^{a/2} f(x) \, dx = \alpha \), so: \[ I = 2 \alpha \] 8. **Final Result**: Therefore, the value of the integral \( \int_0^a f(x) \, dx \) is: \[ \int_0^a f(x) \, dx = 2\alpha \] ### Conclusion: The final answer is: \[ \int_0^a f(x) \, dx = 2\alpha \]

To solve the problem, we need to evaluate the integral \( \int_0^a f(x) \, dx \) given the condition \( f(a - x) = f(x) \) for all \( x \) in the interval \([0, a]\) and the information that \( \int_0^{a/2} f(x) \, dx = \alpha \). ### Step-by-Step Solution: 1. **Define the Integral**: Let \( I = \int_0^a f(x) \, dx \). 2. **Use the Property of the Function**: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If int_0^af(2a-x)dx=m and int_0^af(x)dx=n, then int_0^(2a) f(x) dx is equal to

If f(a+x)=f(x), then int_(0)^(na) f(x)dx is equal to (n in N)

Let f(x) be a function defined on R satisfyin f(x) =f(1-x) for all x in R . Then int_(-1//2)^(1//2) f(x+(1)/(2))sin x dx equals

Let f (x) be function defined on [0,1] such that f (1)=0 and for any a in (0,1], int _(0)^(a) f (x) dx - int _(a)^(1) f (x) dx =2 f (a) +3a +b where b is constant. b=

Let f(x) be a continuous and periodic function such that f(x)=f(x+T) for all xepsilonR,Tgt0 .If int_(-2T)^(a+5T)f(x)dx=19(ag0) and int_(0)^(T)f(x)dx=2 , then find the value of int_(0)^(a)f(x)dx .

Let f (x) be function defined on [0,1] such that f (1)=0 and for any a in (0,1], int _(0)^(a) f (x) dx - int _(a)^(1) f (x) dx =2 f (a) +3a +b where b is constant. The length of the subtangent of the curve y= f (x ) at x=1//2 is:

Let f: R rarr R be a continuous function given by f(x+y)=f(x)+f(y) for all x,y, in R, if int_0^2 f(x)dx=alpha, then int_-2^2 f(x) dx is equal to

Let f and g be continuous fuctions on [0, a] such that f(x)=f(a-x)" and "g(x)+g(a-x)=4 " then " int_(0)^(a)f(x)g(x)dx is equal to

If int_(0)^(x)((t^(3)+t)dt)/((1+3t^(2)))=f(x) , then int_(0)^(1)f^(')(x) dx is equal to

Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in [0,a] . Then int_0^a dx/(1+e^(f(x)))= (A) a (B) a/2 (C) 1/2f(a) (D) none of these

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If f and g are continuous functions on [ 0, pi] satisfying f(x) +f(pi...

    Text Solution

    |

  2. If f(x) and g(x) are two continuous functions defined on [-a,a] then t...

    Text Solution

    |

  3. Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f...

    Text Solution

    |

  4. The value of the integral int(0)^(pi//2) sin 2n x cot x dx, where n ...

    Text Solution

    |

  5. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  6. For any natural number n, theb value of rArr int(0)^(n^(2))[ sqrt(x)]d...

    Text Solution

    |

  7. The value of the integral int(a)^(a+pi//2) (|sin x|+|cosx|)dx is

    Text Solution

    |

  8. If rArrI(n)= int(a)^(a+pi//2)(cos^(2)nx)/(sinx) dx, "then" I(2)-I(1),I...

    Text Solution

    |

  9. Let f(x) be a polynomial of degree 2 satisfying f(0)=1, f(0) =-2 and f...

    Text Solution

    |

  10. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  11. f(x)=int0^x f(t) dt=x+intx^1 tf(t)dt, then the value of f(1) is

    Text Solution

    |

  12. If f(x)= int0^(sinx) cos^(-1)t dt +int(0)^(cosx) sin^(-1)t dt, 0 lt ...

    Text Solution

    |

  13. Let f(x) be a continous function such that int(m)^(n+1) f(x) dx =n^(3)...

    Text Solution

    |

  14. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  15. If int(0)^(1) x e^(x^(2) ) dx=alpha int(0)^(1) e^(x^(2)) dx, then

    Text Solution

    |

  16. If I=int(0)^(1) (1+e^(-x^2)) dx then, s

    Text Solution

    |

  17. If I= int(0)^(1)(x)/(8+x^(3))dx then the smallest interval is which I ...

    Text Solution

    |

  18. Letf :R rarr R be a continous function given by f(x+y)=f(x)f(y) "for a...

    Text Solution

    |

  19. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  20. The value of underset(x rarr0)(lim)(2int(0)^(cos x ) cos^(-1) (t))/(2x...

    Text Solution

    |