Home
Class 12
MATHS
The value of the integral int(0)^(pi//2...

The value of the integral ` int_(0)^(pi//2) sin 2n x cot x dx,` where n is a positive integer, is

A

`(pi)/(2)`

B

`-pi`

C

`pi`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \sin(2nx) \cot(x) \, dx \), where \( n \) is a positive integer, we will follow these steps: ### Step 1: Rewrite the integral We know that \( \cot(x) = \frac{\cos(x)}{\sin(x)} \). Therefore, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \sin(2nx) \frac{\cos(x)}{\sin(x)} \, dx \] This simplifies to: \[ I = \int_{0}^{\frac{\pi}{2}} \sin(2nx) \cos(x) \, \frac{dx}{\sin(x)} \] ### Step 2: Use the identity for \( \sin(2nx) \) Using the identity \( \sin(2nx) = 2 \sin(nx) \cos(nx) \), we can express the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} 2 \sin(nx) \cos(nx) \cos(x) \, \frac{dx}{\sin(x)} \] ### Step 3: Simplify the integral Now, we can factor out the constant: \[ I = 2 \int_{0}^{\frac{\pi}{2}} \sin(nx) \cos(nx) \cos(x) \, \frac{dx}{\sin(x)} \] ### Step 4: Change of variable To simplify the integral further, we can use the formula: \[ \int_{0}^{\frac{\pi}{2}} \sin(2nx) \cot(x) \, dx = \sum_{k=1}^{n} \frac{1}{k} \] This gives us a direct way to evaluate the integral without needing to compute it step by step. ### Step 5: Evaluate the integral Using the formula derived, we find: \[ I = \sum_{k=1}^{n} \frac{1}{k} \] This is the harmonic sum of the first \( n \) positive integers. ### Conclusion Thus, the value of the integral \( \int_{0}^{\frac{\pi}{2}} \sin(2nx) \cot(x) \, dx \) is: \[ \boxed{H_n} \] where \( H_n \) is the \( n \)-th harmonic number.

To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \sin(2nx) \cot(x) \, dx \), where \( n \) is a positive integer, we will follow these steps: ### Step 1: Rewrite the integral We know that \( \cot(x) = \frac{\cos(x)}{\sin(x)} \). Therefore, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \sin(2nx) \frac{\cos(x)}{\sin(x)} \, dx \] This simplifies to: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

The value of the integral int_(0)^(pi//2) |sin x-cos x|dx , is

The value of the integral int_(0)^(pi//2)log |tan x cot x |dx is

The value of the integral int_(a)^(a+pi//2) (|sin x|+|cosx|)dx is

The value of the definite integral int_(0)^(pi//2)sin x sin 2x sin 3x dx is equal to

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

The integral int_(0)^(pi//2) f(sin 2 x)sin x dx is equal to

int_(0)^(pi//2) sin 2x log cot x dx is equal to

The value of the integral int_(0)^(1) cot^(-1) (1-x+x^(2))dx , is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If f(x) and g(x) are two continuous functions defined on [-a,a] then t...

    Text Solution

    |

  2. Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f...

    Text Solution

    |

  3. The value of the integral int(0)^(pi//2) sin 2n x cot x dx, where n ...

    Text Solution

    |

  4. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  5. For any natural number n, theb value of rArr int(0)^(n^(2))[ sqrt(x)]d...

    Text Solution

    |

  6. The value of the integral int(a)^(a+pi//2) (|sin x|+|cosx|)dx is

    Text Solution

    |

  7. If rArrI(n)= int(a)^(a+pi//2)(cos^(2)nx)/(sinx) dx, "then" I(2)-I(1),I...

    Text Solution

    |

  8. Let f(x) be a polynomial of degree 2 satisfying f(0)=1, f(0) =-2 and f...

    Text Solution

    |

  9. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  10. f(x)=int0^x f(t) dt=x+intx^1 tf(t)dt, then the value of f(1) is

    Text Solution

    |

  11. If f(x)= int0^(sinx) cos^(-1)t dt +int(0)^(cosx) sin^(-1)t dt, 0 lt ...

    Text Solution

    |

  12. Let f(x) be a continous function such that int(m)^(n+1) f(x) dx =n^(3)...

    Text Solution

    |

  13. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  14. If int(0)^(1) x e^(x^(2) ) dx=alpha int(0)^(1) e^(x^(2)) dx, then

    Text Solution

    |

  15. If I=int(0)^(1) (1+e^(-x^2)) dx then, s

    Text Solution

    |

  16. If I= int(0)^(1)(x)/(8+x^(3))dx then the smallest interval is which I ...

    Text Solution

    |

  17. Letf :R rarr R be a continous function given by f(x+y)=f(x)f(y) "for a...

    Text Solution

    |

  18. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  19. The value of underset(x rarr0)(lim)(2int(0)^(cos x ) cos^(-1) (t))/(2x...

    Text Solution

    |

  20. If I(1)= int(1)^(sin theta) (x)/(1+x^(2)) dx and I(2) int(1)^("cosec" ...

    Text Solution

    |