Home
Class 12
MATHS
For any natural number n, theb value of ...

For any natural number n, theb value of `rArr int_(0)^(n^(2))[ sqrt(x)]dx,` is

A

`(n(n+1)(4n+1))/(6)`

B

`(n(n-1)(4n+1))/(6)`

C

`(n(n-1)(4n-1))/(6)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

We have,
`I=underset(0)overset(n^(2))int [ sqrt(x)]dx`
`rArr I=underset(r=1)overset(n)sum underset((r-1)^(2))overset(r^(2))int [ sqrt(x)]dx`
`rArr I=underset(r=1)overset(n)sum underset((r-1)^(2))overset(r^(2))int (r-1)dx`
`rArr I=underset(r=1)overset(n)sum (r-1)(2r-1)`
`rArr I=underset(r=1)overset(n)sum (2r^(2)-3r+1)`
`rArr I=2 xx(n(n+1)(2n+1))/(6)-3xx(n(n+1))/(2)+n`
`rArr I=(n)/(6){2(2n^(2)+3n+1)-9n-9+6}`
`rArr L=(n)/(6) (n-1)(4n+1)=(n(n-1)(4n+1))/(6)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

For any natural number n, the value of the integral int_(0)^(sqrt(n)) [x^(2)]dx is

int_(0)^(2) sqrt(2-x)dx .

For any real number x, the value of int_(0)^(x) [x]dx , is

int_(0)^(sqrt(2)) [x^(2)]dx , is

For any n in N , the value of the intergral int_(0)^(pi) (sin 2nx)/(sinx)dx is,

For any n in R^(+) , the value of the integral int_(0)^(n[x]) (x-[x])dx is

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

Prove that the value of : int_0^pi(sin(n+1/2)x)/sin(x/2)dx=pi

If n is a natural number, then sqrt(n) is:

If x in[(4n+1)(pi)/(2),(4n+3)(pi)/(2)] and n in N , then the value of int_(0)^(x) [cos t] dt , is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. The value of the integral int(0)^(pi//2) sin 2n x cot x dx, where n ...

    Text Solution

    |

  2. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  3. For any natural number n, theb value of rArr int(0)^(n^(2))[ sqrt(x)]d...

    Text Solution

    |

  4. The value of the integral int(a)^(a+pi//2) (|sin x|+|cosx|)dx is

    Text Solution

    |

  5. If rArrI(n)= int(a)^(a+pi//2)(cos^(2)nx)/(sinx) dx, "then" I(2)-I(1),I...

    Text Solution

    |

  6. Let f(x) be a polynomial of degree 2 satisfying f(0)=1, f(0) =-2 and f...

    Text Solution

    |

  7. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  8. f(x)=int0^x f(t) dt=x+intx^1 tf(t)dt, then the value of f(1) is

    Text Solution

    |

  9. If f(x)= int0^(sinx) cos^(-1)t dt +int(0)^(cosx) sin^(-1)t dt, 0 lt ...

    Text Solution

    |

  10. Let f(x) be a continous function such that int(m)^(n+1) f(x) dx =n^(3)...

    Text Solution

    |

  11. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  12. If int(0)^(1) x e^(x^(2) ) dx=alpha int(0)^(1) e^(x^(2)) dx, then

    Text Solution

    |

  13. If I=int(0)^(1) (1+e^(-x^2)) dx then, s

    Text Solution

    |

  14. If I= int(0)^(1)(x)/(8+x^(3))dx then the smallest interval is which I ...

    Text Solution

    |

  15. Letf :R rarr R be a continous function given by f(x+y)=f(x)f(y) "for a...

    Text Solution

    |

  16. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  17. The value of underset(x rarr0)(lim)(2int(0)^(cos x ) cos^(-1) (t))/(2x...

    Text Solution

    |

  18. If I(1)= int(1)^(sin theta) (x)/(1+x^(2)) dx and I(2) int(1)^("cosec" ...

    Text Solution

    |

  19. If f(x)=int(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

    Text Solution

    |

  20. Let F(x) =f(x) +f((1)/(x)),"where" f(x)=int(1)^(x) (log t)/(1+t) dt Th...

    Text Solution

    |