Home
Class 12
MATHS
If rArrI(n)= int(a)^(a+pi//2)(cos^(2)nx)...

If `rArrI_(n)= int_(a)^(a+pi//2)(cos^(2)nx)/(sinx) dx, "then" I_(2)-I_(1),I_(3)-I_(2),I_(4)-I_(3)` are in

A

G.P.

B

A.P.

C

H.P.

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the differences \( I_2 - I_1 \), \( I_3 - I_2 \), and \( I_4 - I_3 \) for the integral \[ I_n = \int_a^{a + \frac{\pi}{2}} \frac{\cos^2(nx)}{\sin x} \, dx \] and determine if these differences are in a geometric progression (GP), harmonic progression (HP), or neither. ### Step 1: Expressing \( I_n \) We start with the integral: \[ I_n = \int_a^{a + \frac{\pi}{2}} \frac{\cos^2(nx)}{\sin x} \, dx \] Using the periodicity of sine and cosine functions, we can rewrite the integral over a more convenient interval: \[ I_n = \int_0^{\frac{\pi}{2}} \frac{\cos^2(nx)}{\sin x} \, dx \] ### Step 2: Finding the Differences We need to find the differences \( I_2 - I_1 \), \( I_3 - I_2 \), and \( I_4 - I_3 \). Using the identity for the difference of integrals: \[ I_n - I_{n-1} = \int_0^{\frac{\pi}{2}} \left( \frac{\cos^2(nx)}{\sin x} - \frac{\cos^2((n-1)x)}{\sin x} \right) dx \] This can be simplified as: \[ I_n - I_{n-1} = \int_0^{\frac{\pi}{2}} \frac{\cos^2(nx) - \cos^2((n-1)x)}{\sin x} \, dx \] ### Step 3: Using the Cosine Square Identity Using the identity \( \cos^2 A - \cos^2 B = (\cos A - \cos B)(\cos A + \cos B) \): \[ \cos^2(nx) - \cos^2((n-1)x) = \left( \cos(nx) - \cos((n-1)x) \right) \left( \cos(nx) + \cos((n-1)x) \right) \] ### Step 4: Evaluating the Integral The integral can be evaluated using the sine difference formula: \[ I_n - I_{n-1} = \int_0^{\frac{\pi}{2}} \frac{\sin((2n-1)x)}{\sin x} \, dx \] This integral can be computed to yield: \[ I_n - I_{n-1} = -\frac{1}{2n - 1} \] ### Step 5: Finding Each Difference Now we can compute: 1. \( I_2 - I_1 = -\frac{1}{2 \cdot 2 - 1} = -\frac{1}{3} \) 2. \( I_3 - I_2 = -\frac{1}{2 \cdot 3 - 1} = -\frac{1}{5} \) 3. \( I_4 - I_3 = -\frac{1}{2 \cdot 4 - 1} = -\frac{1}{7} \) ### Step 6: Checking for HP To check if these differences are in HP, we need to verify the condition: \[ \frac{2}{I_3 - I_2} = \frac{1}{I_2 - I_1} + \frac{1}{I_4 - I_3} \] Substituting the values: \[ \frac{2}{-\frac{1}{5}} = \frac{1}{-\frac{1}{3}} + \frac{1}{-\frac{1}{7}} \] Calculating both sides: Left side: \[ -10 = -3 + -7 \] Both sides equal, confirming that the differences are in HP. ### Conclusion Thus, we conclude that \( I_2 - I_1 \), \( I_3 - I_2 \), and \( I_4 - I_3 \) are in harmonic progression (HP).

To solve the problem, we need to evaluate the differences \( I_2 - I_1 \), \( I_3 - I_2 \), and \( I_4 - I_3 \) for the integral \[ I_n = \int_a^{a + \frac{\pi}{2}} \frac{\cos^2(nx)}{\sin x} \, dx \] and determine if these differences are in a geometric progression (GP), harmonic progression (HP), or neither. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If I_n = int_0^(pi/2) (sin^2 nx)/(sin^2 x) dx , then

If I_(n)=int_(0)^(pi)(1-sin2nx)/(1-cos2x)dx then I_(1),I_(2),I_(3),"….." are in

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

Let I_(n) = int_(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx , n in N then

If I_(n)=int_(0)^(pi) e^(x)(sinx)^(n)dx , then (I_(3))/(I_(1)) is equal to

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

If I_(n)=int_(0)^(pi//4) tan^(n)x dx , then (1)/(I_(2)+I_(4)),(1)/(I_(3)+I_(5)),(1)/(I_(4)+I_(6)),... from\

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

If I_(n)=int_(0)^(pi) e^(x)sin^(n)x " dx then " (I_(3))/(I_(1)) is equal to

If I_(n)=int_(0)^(pi)x^(n)sinxdx , then find the value of I_(5)+20I_(3) .

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. For any natural number n, theb value of rArr int(0)^(n^(2))[ sqrt(x)]d...

    Text Solution

    |

  2. The value of the integral int(a)^(a+pi//2) (|sin x|+|cosx|)dx is

    Text Solution

    |

  3. If rArrI(n)= int(a)^(a+pi//2)(cos^(2)nx)/(sinx) dx, "then" I(2)-I(1),I...

    Text Solution

    |

  4. Let f(x) be a polynomial of degree 2 satisfying f(0)=1, f(0) =-2 and f...

    Text Solution

    |

  5. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  6. f(x)=int0^x f(t) dt=x+intx^1 tf(t)dt, then the value of f(1) is

    Text Solution

    |

  7. If f(x)= int0^(sinx) cos^(-1)t dt +int(0)^(cosx) sin^(-1)t dt, 0 lt ...

    Text Solution

    |

  8. Let f(x) be a continous function such that int(m)^(n+1) f(x) dx =n^(3)...

    Text Solution

    |

  9. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  10. If int(0)^(1) x e^(x^(2) ) dx=alpha int(0)^(1) e^(x^(2)) dx, then

    Text Solution

    |

  11. If I=int(0)^(1) (1+e^(-x^2)) dx then, s

    Text Solution

    |

  12. If I= int(0)^(1)(x)/(8+x^(3))dx then the smallest interval is which I ...

    Text Solution

    |

  13. Letf :R rarr R be a continous function given by f(x+y)=f(x)f(y) "for a...

    Text Solution

    |

  14. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  15. The value of underset(x rarr0)(lim)(2int(0)^(cos x ) cos^(-1) (t))/(2x...

    Text Solution

    |

  16. If I(1)= int(1)^(sin theta) (x)/(1+x^(2)) dx and I(2) int(1)^("cosec" ...

    Text Solution

    |

  17. If f(x)=int(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

    Text Solution

    |

  18. Let F(x) =f(x) +f((1)/(x)),"where" f(x)=int(1)^(x) (log t)/(1+t) dt Th...

    Text Solution

    |

  19. int(0)^(x) (bt cos 4t-a sin 4t)/(t^(2))dt=(a sin 4x)/(x) "foe all "x ...

    Text Solution

    |

  20. Let f:RtoR,f(x)={:(|x-[x]|,[x] "is odd"),(|x-[x+1]|,[x] "is even"):} w...

    Text Solution

    |