Home
Class 12
MATHS
If f(x)= int0^(sinx) cos^(-1)t dt +int(0...

If `f(x)= int_0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2)` then ` f(pi//4)` is equal to

A

`(pi)/(sqrt(2))`

B

`1+(pi)/(2sqrt(2))`

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(x) \) defined as: \[ f(x) = \int_0^{\sin x} \cos^{-1} t \, dt + \int_0^{\cos x} \sin^{-1} t \, dt \] We are tasked with finding \( f\left(\frac{\pi}{4}\right) \). ### Step 1: Substitute \( x = \frac{\pi}{4} \) First, we substitute \( x = \frac{\pi}{4} \) into the function: \[ f\left(\frac{\pi}{4}\right) = \int_0^{\sin\left(\frac{\pi}{4}\right)} \cos^{-1} t \, dt + \int_0^{\cos\left(\frac{\pi}{4}\right)} \sin^{-1} t \, dt \] ### Step 2: Calculate \( \sin\left(\frac{\pi}{4}\right) \) and \( \cos\left(\frac{\pi}{4}\right) \) We know that: \[ \sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] Thus, we can rewrite the function as: \[ f\left(\frac{\pi}{4}\right) = \int_0^{\frac{1}{\sqrt{2}}} \cos^{-1} t \, dt + \int_0^{\frac{1}{\sqrt{2}}} \sin^{-1} t \, dt \] ### Step 3: Combine the Integrals Since both integrals have the same limits, we can combine them: \[ f\left(\frac{\pi}{4}\right) = \int_0^{\frac{1}{\sqrt{2}}} \left(\cos^{-1} t + \sin^{-1} t\right) dt \] ### Step 4: Use the Identity We use the identity: \[ \sin^{-1} t + \cos^{-1} t = \frac{\pi}{2} \] Thus, we can simplify the integral: \[ f\left(\frac{\pi}{4}\right) = \int_0^{\frac{1}{\sqrt{2}}} \frac{\pi}{2} \, dt \] ### Step 5: Evaluate the Integral Now we can evaluate the integral: \[ f\left(\frac{\pi}{4}\right) = \frac{\pi}{2} \int_0^{\frac{1}{\sqrt{2}}} dt \] The integral \( \int_0^{\frac{1}{\sqrt{2}}} dt \) is simply: \[ \int_0^{\frac{1}{\sqrt{2}}} dt = \left[ t \right]_0^{\frac{1}{\sqrt{2}}} = \frac{1}{\sqrt{2}} - 0 = \frac{1}{\sqrt{2}} \] ### Step 6: Final Calculation Substituting back, we get: \[ f\left(\frac{\pi}{4}\right) = \frac{\pi}{2} \cdot \frac{1}{\sqrt{2}} = \frac{\pi}{2\sqrt{2}} \] Thus, the final answer is: \[ f\left(\frac{\pi}{4}\right) = \frac{\pi}{2\sqrt{2}} \]

To solve the problem, we need to evaluate the function \( f(x) \) defined as: \[ f(x) = \int_0^{\sin x} \cos^{-1} t \, dt + \int_0^{\cos x} \sin^{-1} t \, dt \] We are tasked with finding \( f\left(\frac{\pi}{4}\right) \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_0^sinx cos^-1t dt+int_0^cosx sin^-1t dt, 0ltxltpi/2 , then f(pi/4)= (A) 0 (B) pi/sqrt(2) (C) 1 (D) none of these

If f(x)=int_0^x(sint)/t dt ,x >0, then

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

If f(x)=int_0^x{f(t)}^(- 1)dt and int_0^1{f(t)}^(- 1)=sqrt(2), then

If f(x)=int_(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt (pi)/2 then

(i) If f(x) = int_(0)^(sin^(2)x)sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t) dt, then prove that f'(x) = 0 AA x in R . (ii) Find the value of x for which function f(x) = int_(-1)^(x) t(e^(t)-1)(t-1)(t-2)^(3)(t-3)^(5)dt has a local minimum.

Let F(x)=int_(sinx)^(cosx)e^((1+sin^(-1)(t))dt on [0,(pi)/(2)] , then

If f(-x)+f(x)=0 then int_a^x f(t) dt is

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If f(x)=int_0^x tf(t)dt+2, then

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  2. f(x)=int0^x f(t) dt=x+intx^1 tf(t)dt, then the value of f(1) is

    Text Solution

    |

  3. If f(x)= int0^(sinx) cos^(-1)t dt +int(0)^(cosx) sin^(-1)t dt, 0 lt ...

    Text Solution

    |

  4. Let f(x) be a continous function such that int(m)^(n+1) f(x) dx =n^(3)...

    Text Solution

    |

  5. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  6. If int(0)^(1) x e^(x^(2) ) dx=alpha int(0)^(1) e^(x^(2)) dx, then

    Text Solution

    |

  7. If I=int(0)^(1) (1+e^(-x^2)) dx then, s

    Text Solution

    |

  8. If I= int(0)^(1)(x)/(8+x^(3))dx then the smallest interval is which I ...

    Text Solution

    |

  9. Letf :R rarr R be a continous function given by f(x+y)=f(x)f(y) "for a...

    Text Solution

    |

  10. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  11. The value of underset(x rarr0)(lim)(2int(0)^(cos x ) cos^(-1) (t))/(2x...

    Text Solution

    |

  12. If I(1)= int(1)^(sin theta) (x)/(1+x^(2)) dx and I(2) int(1)^("cosec" ...

    Text Solution

    |

  13. If f(x)=int(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

    Text Solution

    |

  14. Let F(x) =f(x) +f((1)/(x)),"where" f(x)=int(1)^(x) (log t)/(1+t) dt Th...

    Text Solution

    |

  15. int(0)^(x) (bt cos 4t-a sin 4t)/(t^(2))dt=(a sin 4x)/(x) "foe all "x ...

    Text Solution

    |

  16. Let f:RtoR,f(x)={:(|x-[x]|,[x] "is odd"),(|x-[x+1]|,[x] "is even"):} w...

    Text Solution

    |

  17. If f(x) = sin x+cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} ...

    Text Solution

    |

  18. If x in[(4n+1)(pi)/(2),(4n+3)(pi)/(2)] and n in N, then the value of i...

    Text Solution

    |

  19. If f:R in R is continuous and differentiable function such that int(...

    Text Solution

    |

  20. Let l(1)=int(0)^(1)(e^(x))/(1+x)dx and l(2)=int(0)^(1)(x^(2))/(e^(x^(3...

    Text Solution

    |