Home
Class 12
MATHS
If int(0)^(1) x e^(x^(2) ) dx=alpha int(...

If `int_(0)^(1) x e^(x^(2) ) dx=alpha int_(0)^(1) e^(x^(2)) dx`, then

A

`alpha in (0,1)`

B

`(1,2)`

C

`(-oo,0)`

D

`(0,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the range of \(\alpha\) given the equation: \[ \int_{0}^{1} x e^{x^2} \, dx = \alpha \int_{0}^{1} e^{x^2} \, dx \] ### Step 1: Analyze the given integrals We have two integrals to consider: 1. \(I_1 = \int_{0}^{1} x e^{x^2} \, dx\) 2. \(I_2 = \int_{0}^{1} e^{x^2} \, dx\) ### Step 2: Establish inequalities Since \(0 < x < 1\) in the interval of integration, we can multiply \(x\) by \(e^{x^2}\): \[ 0 < x e^{x^2} < e^{x^2} \quad \text{for } 0 < x < 1 \] ### Step 3: Integrate the inequalities Integrating the inequalities from \(0\) to \(1\): \[ \int_{0}^{1} 0 \, dx < \int_{0}^{1} x e^{x^2} \, dx < \int_{0}^{1} e^{x^2} \, dx \] This simplifies to: \[ 0 < I_1 < I_2 \] ### Step 4: Substitute the original equation From the original equation, we have: \[ I_1 = \alpha I_2 \] ### Step 5: Substitute into the inequality Substituting \(I_1\) into the inequality gives: \[ 0 < \alpha I_2 < I_2 \] ### Step 6: Divide by \(I_2\) Assuming \(I_2 > 0\) (which is true since \(e^{x^2}\) is positive for all \(x\)), we can divide through by \(I_2\): \[ 0 < \alpha < 1 \] ### Conclusion Thus, we find that the range of \(\alpha\) is: \[ \alpha \in (0, 1) \]

To solve the problem, we need to find the range of \(\alpha\) given the equation: \[ \int_{0}^{1} x e^{x^2} \, dx = \alpha \int_{0}^{1} e^{x^2} \, dx \] ### Step 1: Analyze the given integrals ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) x e^(x) dx=1

If I=int_(0)^(1) (1+e^(-x^2)) dx then, s

int_(0)^(2) e^(x) dx

int_(0)^(4)(x+e^(2x))dx

If int _(0)^(1) e ^(-x ^(2)) dx =a, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

If int_(0)^(1) cot^(-1)(1-x+x^(2))dx=k int_(0)^(1) tan^(-1)x dx , then k=

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

1. int_(0)^(oo)e^(-x/2)dx

If I_(1)=int_(0)^(1) 2^(x^(2)) dx, I_(2)=int_(0)^(1) 2^(x^(3)) dx, I_(3)=int_(1)^(2) 2^(x^(2))dx and I_(4)=int_(1)^(2) 2^(x^(3))dx then

int_(0)^(1)e^(2x)e^(e^(x) dx =)

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. Let f(x) be a continous function such that int(m)^(n+1) f(x) dx =n^(3)...

    Text Solution

    |

  2. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  3. If int(0)^(1) x e^(x^(2) ) dx=alpha int(0)^(1) e^(x^(2)) dx, then

    Text Solution

    |

  4. If I=int(0)^(1) (1+e^(-x^2)) dx then, s

    Text Solution

    |

  5. If I= int(0)^(1)(x)/(8+x^(3))dx then the smallest interval is which I ...

    Text Solution

    |

  6. Letf :R rarr R be a continous function given by f(x+y)=f(x)f(y) "for a...

    Text Solution

    |

  7. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  8. The value of underset(x rarr0)(lim)(2int(0)^(cos x ) cos^(-1) (t))/(2x...

    Text Solution

    |

  9. If I(1)= int(1)^(sin theta) (x)/(1+x^(2)) dx and I(2) int(1)^("cosec" ...

    Text Solution

    |

  10. If f(x)=int(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

    Text Solution

    |

  11. Let F(x) =f(x) +f((1)/(x)),"where" f(x)=int(1)^(x) (log t)/(1+t) dt Th...

    Text Solution

    |

  12. int(0)^(x) (bt cos 4t-a sin 4t)/(t^(2))dt=(a sin 4x)/(x) "foe all "x ...

    Text Solution

    |

  13. Let f:RtoR,f(x)={:(|x-[x]|,[x] "is odd"),(|x-[x+1]|,[x] "is even"):} w...

    Text Solution

    |

  14. If f(x) = sin x+cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} ...

    Text Solution

    |

  15. If x in[(4n+1)(pi)/(2),(4n+3)(pi)/(2)] and n in N, then the value of i...

    Text Solution

    |

  16. If f:R in R is continuous and differentiable function such that int(...

    Text Solution

    |

  17. Let l(1)=int(0)^(1)(e^(x))/(1+x)dx and l(2)=int(0)^(1)(x^(2))/(e^(x^(3...

    Text Solution

    |

  18. Let f(x)={(1-|x|","|x|le1),(0","|x|gt1):} and g(x)=f(x-1)"for all" x i...

    Text Solution

    |

  19. If f(x)=(x-1)/(x+1),f^(2)(x)=f(f(x)),……..,……..f^(k+1)(x)=f(f^(k)(x)),k...

    Text Solution

    |

  20. If f:R in R be such that f(x)=sqrt(sin(cosx))+"In"(-2cos^(2) x+3 cos...

    Text Solution

    |