Home
Class 12
MATHS
If I=int(0)^(1) (1+e^(-x^2)) dx then, s...

If `I=int_(0)^(1) (1+e^(-x^2)) dx` then, s

A

`I= in (1,2)`

B

`I in (0,1)`

C

`I in (1+(1)/(e),2]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} (1 + e^{-x^2}) \, dx \), we can break it down into two separate integrals: \[ I = \int_{0}^{1} 1 \, dx + \int_{0}^{1} e^{-x^2} \, dx \] ### Step 1: Calculate the first integral The first integral is straightforward: \[ \int_{0}^{1} 1 \, dx = [x]_{0}^{1} = 1 - 0 = 1 \] ### Step 2: Analyze the second integral Now, we need to evaluate the second integral \( \int_{0}^{1} e^{-x^2} \, dx \). We do not have an elementary function for this integral, but we can estimate its value. ### Step 3: Estimate \( \int_{0}^{1} e^{-x^2} \, dx \) We know that \( e^{-x^2} \) is a decreasing function on the interval \( [0, 1] \). Therefore, we can find bounds for this integral. - At \( x = 0 \), \( e^{-0^2} = e^0 = 1 \). - At \( x = 1 \), \( e^{-1^2} = e^{-1} \). Thus, we can say: \[ e^{-1} < e^{-x^2} < 1 \quad \text{for } x \in [0, 1] \] ### Step 4: Set up the inequalities for the integral Integrating the inequalities over the interval from 0 to 1 gives: \[ \int_{0}^{1} e^{-1} \, dx < \int_{0}^{1} e^{-x^2} \, dx < \int_{0}^{1} 1 \, dx \] This simplifies to: \[ e^{-1} < \int_{0}^{1} e^{-x^2} \, dx < 1 \] ### Step 5: Combine results Adding 1 to all parts of the inequality gives: \[ 1 + e^{-1} < I < 2 \] ### Step 6: Conclusion Thus, we have established that: \[ I \in \left( 1 + \frac{1}{e}, 2 \right) \] This means that the correct option is \( I \) belongs to \( 1 + \frac{1}{e} \) to \( 2 \). ### Final Answer The correct option is \( I \in \left( 1 + \frac{1}{e}, 2 \right) \). ---

To solve the integral \( I = \int_{0}^{1} (1 + e^{-x^2}) \, dx \), we can break it down into two separate integrals: \[ I = \int_{0}^{1} 1 \, dx + \int_{0}^{1} e^{-x^2} \, dx \] ### Step 1: Calculate the first integral ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)x e^(x^(2)) dx

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =a, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

If I=int_(0)^(1) (1)/(1+x^(pi//2))dx then

int_(0)^(1) x e^(x) dx=1

Let I= int_(0)^(1) (e^(x))/( x+1) dx, then the vlaue of the intergral int_(0)^(1) (xe^(x^(2)))/( x^(2)+1) dx, is

If int_(0)^(1) x e^(x^(2) ) dx=alpha int_(0)^(1) e^(x^(2)) dx , then

If int_(0)^(1)e^(x^(2))(x-a)dx=0 , then the value of int_(0)^(1)e^(X^(2))dx is euqal to

int_(0)^(2) (e^(-1//x))/(x^(2)) dx

Let A=int_(0)^(1)(e^(x))/(x+1) dx then answer the following questions in terms of A. Q. int_(0)^(1)(x^(2)e^(x))/(x+1)dx equals

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  2. If int(0)^(1) x e^(x^(2) ) dx=alpha int(0)^(1) e^(x^(2)) dx, then

    Text Solution

    |

  3. If I=int(0)^(1) (1+e^(-x^2)) dx then, s

    Text Solution

    |

  4. If I= int(0)^(1)(x)/(8+x^(3))dx then the smallest interval is which I ...

    Text Solution

    |

  5. Letf :R rarr R be a continous function given by f(x+y)=f(x)f(y) "for a...

    Text Solution

    |

  6. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  7. The value of underset(x rarr0)(lim)(2int(0)^(cos x ) cos^(-1) (t))/(2x...

    Text Solution

    |

  8. If I(1)= int(1)^(sin theta) (x)/(1+x^(2)) dx and I(2) int(1)^("cosec" ...

    Text Solution

    |

  9. If f(x)=int(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

    Text Solution

    |

  10. Let F(x) =f(x) +f((1)/(x)),"where" f(x)=int(1)^(x) (log t)/(1+t) dt Th...

    Text Solution

    |

  11. int(0)^(x) (bt cos 4t-a sin 4t)/(t^(2))dt=(a sin 4x)/(x) "foe all "x ...

    Text Solution

    |

  12. Let f:RtoR,f(x)={:(|x-[x]|,[x] "is odd"),(|x-[x+1]|,[x] "is even"):} w...

    Text Solution

    |

  13. If f(x) = sin x+cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} ...

    Text Solution

    |

  14. If x in[(4n+1)(pi)/(2),(4n+3)(pi)/(2)] and n in N, then the value of i...

    Text Solution

    |

  15. If f:R in R is continuous and differentiable function such that int(...

    Text Solution

    |

  16. Let l(1)=int(0)^(1)(e^(x))/(1+x)dx and l(2)=int(0)^(1)(x^(2))/(e^(x^(3...

    Text Solution

    |

  17. Let f(x)={(1-|x|","|x|le1),(0","|x|gt1):} and g(x)=f(x-1)"for all" x i...

    Text Solution

    |

  18. If f(x)=(x-1)/(x+1),f^(2)(x)=f(f(x)),……..,……..f^(k+1)(x)=f(f^(k)(x)),k...

    Text Solution

    |

  19. If f:R in R be such that f(x)=sqrt(sin(cosx))+"In"(-2cos^(2) x+3 cos...

    Text Solution

    |

  20. If int(e)^(x) t f(t)dt=sin x-x cos x-(x^(2))/(2) for all x in R-{0}, t...

    Text Solution

    |