Home
Class 12
MATHS
If I= int(0)^(1)(x)/(8+x^(3))dx then the...

If `I= int_(0)^(1)(x)/(8+x^(3))dx` then the smallest interval is which I less is

A

(0,1/8)

B

(0,1/9)

C

(0,1/10)

D

(0,1/7)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} \frac{x}{8 + x^3} \, dx \) and find the smallest interval in which \( I \) lies, we can follow these steps: ### Step 1: Define the function Let \( f(x) = \frac{x}{8 + x^3} \). ### Step 2: Find the derivative To analyze the behavior of \( f(x) \), we need to find its derivative \( f'(x) \): \[ f'(x) = \frac{(8 + x^3)(1) - x(3x^2)}{(8 + x^3)^2} \] This simplifies to: \[ f'(x) = \frac{8 + x^3 - 3x^3}{(8 + x^3)^2} = \frac{8 - 2x^3}{(8 + x^3)^2} \] ### Step 3: Determine the sign of the derivative We need to analyze the sign of \( f'(x) \) over the interval \( [0, 1] \): - The numerator \( 8 - 2x^3 \) is positive for \( x \in [0, 1] \) because \( 2x^3 \leq 2 \) when \( x \leq 1 \). - Therefore, \( f'(x) > 0 \) for \( x \in [0, 1] \). This implies that \( f(x) \) is an increasing function on the interval \( [0, 1] \). ### Step 4: Evaluate the function at the endpoints Now we evaluate \( f(x) \) at the endpoints of the interval: - At \( x = 0 \): \[ f(0) = \frac{0}{8 + 0^3} = 0 \] - At \( x = 1 \): \[ f(1) = \frac{1}{8 + 1^3} = \frac{1}{9} \] ### Step 5: Establish the bounds for the integral Since \( f(x) \) is increasing on \( [0, 1] \), we have: \[ f(0) \leq f(x) \leq f(1) \] Thus, \[ 0 \leq I \leq \frac{1}{9} \] ### Conclusion The integral \( I \) lies in the interval: \[ I \in [0, \frac{1}{9}] \] ### Final Answer The smallest interval in which \( I \) lies is \( (0, \frac{1}{9}) \). ---

To solve the integral \( I = \int_{0}^{1} \frac{x}{8 + x^3} \, dx \) and find the smallest interval in which \( I \) lies, we can follow these steps: ### Step 1: Define the function Let \( f(x) = \frac{x}{8 + x^3} \). ### Step 2: Find the derivative To analyze the behavior of \( f(x) \), we need to find its derivative \( f'(x) \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If I=int_(0)^(1) (dx)/(1+x^(4)) , then

If I=int_(0)^(1) (1)/(1+x^(pi//2))dx then

If I=int_(0)^(1) (dx)/(sqrt(1+x^(4)))dx then

If I=int_(0)^(1) (1+e^(-x^2)) dx then, s

If I=int_0^(1) (1)/(1+x^(pi//2))dx , then\

Consider I=int_(0)^(1)(dx)/(1+x^(5)). Then, I satisfies

14) I=int(1)/((1-x^(3)))dx

Let I= int_(0)^(1) (e^(x))/( x+1) dx, then the vlaue of the intergral int_(0)^(1) (xe^(x^(2)))/( x^(2)+1) dx, is

If I_(n)=int_(0)^(2)(2dx)/((1-x^(n))) , then the value of lim_(nrarroo)I_(n) is equal to

if I = int_0 ^1.7 [x^2]dx , then I equal is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If int(0)^(1) x e^(x^(2) ) dx=alpha int(0)^(1) e^(x^(2)) dx, then

    Text Solution

    |

  2. If I=int(0)^(1) (1+e^(-x^2)) dx then, s

    Text Solution

    |

  3. If I= int(0)^(1)(x)/(8+x^(3))dx then the smallest interval is which I ...

    Text Solution

    |

  4. Letf :R rarr R be a continous function given by f(x+y)=f(x)f(y) "for a...

    Text Solution

    |

  5. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  6. The value of underset(x rarr0)(lim)(2int(0)^(cos x ) cos^(-1) (t))/(2x...

    Text Solution

    |

  7. If I(1)= int(1)^(sin theta) (x)/(1+x^(2)) dx and I(2) int(1)^("cosec" ...

    Text Solution

    |

  8. If f(x)=int(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

    Text Solution

    |

  9. Let F(x) =f(x) +f((1)/(x)),"where" f(x)=int(1)^(x) (log t)/(1+t) dt Th...

    Text Solution

    |

  10. int(0)^(x) (bt cos 4t-a sin 4t)/(t^(2))dt=(a sin 4x)/(x) "foe all "x ...

    Text Solution

    |

  11. Let f:RtoR,f(x)={:(|x-[x]|,[x] "is odd"),(|x-[x+1]|,[x] "is even"):} w...

    Text Solution

    |

  12. If f(x) = sin x+cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} ...

    Text Solution

    |

  13. If x in[(4n+1)(pi)/(2),(4n+3)(pi)/(2)] and n in N, then the value of i...

    Text Solution

    |

  14. If f:R in R is continuous and differentiable function such that int(...

    Text Solution

    |

  15. Let l(1)=int(0)^(1)(e^(x))/(1+x)dx and l(2)=int(0)^(1)(x^(2))/(e^(x^(3...

    Text Solution

    |

  16. Let f(x)={(1-|x|","|x|le1),(0","|x|gt1):} and g(x)=f(x-1)"for all" x i...

    Text Solution

    |

  17. If f(x)=(x-1)/(x+1),f^(2)(x)=f(f(x)),……..,……..f^(k+1)(x)=f(f^(k)(x)),k...

    Text Solution

    |

  18. If f:R in R be such that f(x)=sqrt(sin(cosx))+"In"(-2cos^(2) x+3 cos...

    Text Solution

    |

  19. If int(e)^(x) t f(t)dt=sin x-x cos x-(x^(2))/(2) for all x in R-{0}, t...

    Text Solution

    |

  20. If f (x)= int(0)^(x) {f(t)}^(-1) dt and int(0)^(1) {f(t)}^(-1)= sqrt2

    Text Solution

    |