Home
Class 12
MATHS
If I(1)= int(1)^(sin theta) (x)/(1+x^(2)...

If `I_(1)= int_(1)^(sin theta) (x)/(1+x^(2)) dx and I_(2) int_(1)^("cosec" theta) (1)/(x(x^(2+1)))dx` then the value of `|{:(I_(1),I_(1)^(2),I_(2)),(e^(I_(1)+I_(2)),I_(2)^(2),-1),(1,I_(1)^(2)+I_(2)^(2),-1):}|` , is

A

`sin theta`

B

`"cosec" theta`

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the determinant involving the integrals \( I_1 \) and \( I_2 \). Let's break down the steps systematically. ### Step 1: Evaluate \( I_1 \) The integral \( I_1 \) is defined as: \[ I_1 = \int_{1}^{\sin \theta} \frac{x}{1+x^2} \, dx \] To solve this integral, we can use a substitution. The derivative of \( 1 + x^2 \) is \( 2x \), which suggests that we can use the substitution \( u = 1 + x^2 \). Thus, \( du = 2x \, dx \) or \( dx = \frac{du}{2x} \). However, a simpler approach is to recognize that: \[ \frac{d}{dx}(\ln(1+x^2)) = \frac{2x}{1+x^2} \] This means: \[ \int \frac{x}{1+x^2} \, dx = \frac{1}{2} \ln(1+x^2) + C \] Now, we can evaluate \( I_1 \): \[ I_1 = \left[ \frac{1}{2} \ln(1+x^2) \right]_{1}^{\sin \theta} \] Calculating the limits: \[ I_1 = \frac{1}{2} \ln(1+\sin^2 \theta) - \frac{1}{2} \ln(2) = \frac{1}{2} \left( \ln(1+\sin^2 \theta) - \ln(2) \right) = \frac{1}{2} \ln\left(\frac{1+\sin^2 \theta}{2}\right) \] ### Step 2: Evaluate \( I_2 \) The integral \( I_2 \) is defined as: \[ I_2 = \int_{1}^{\csc \theta} \frac{1}{x(x^2+1)} \, dx \] We can simplify this integral using partial fractions: \[ \frac{1}{x(x^2+1)} = \frac{A}{x} + \frac{Bx + C}{x^2 + 1} \] Multiplying through by the denominator \( x(x^2+1) \) and solving for \( A, B, C \): \[ 1 = A(x^2 + 1) + (Bx + C)x \] Setting \( x = 0 \) gives \( A = 1 \). By substituting \( x = 1 \) and \( x = -1 \), we can find \( B \) and \( C \). After finding the coefficients, we can integrate: \[ I_2 = \int \left( \frac{1}{x} - \frac{x}{x^2 + 1} \right) \, dx \] This results in: \[ I_2 = \ln |x| - \frac{1}{2} \ln(x^2 + 1) + C \] Evaluating from 1 to \( \csc \theta \): \[ I_2 = \left[ \ln |x| - \frac{1}{2} \ln(x^2 + 1) \right]_{1}^{\csc \theta} \] Calculating the limits gives: \[ I_2 = \left( \ln(\csc \theta) - \frac{1}{2} \ln(\csc^2 \theta + 1) \right) - \left( \ln(1) - \frac{1}{2} \ln(2) \right) \] This simplifies to: \[ I_2 = \ln(\csc \theta) - \frac{1}{2} \ln(\csc^2 \theta + 1) + \frac{1}{2} \ln(2) \] ### Step 3: Relationship Between \( I_1 \) and \( I_2 \) From the video transcript, we find that: \[ I_2 = -I_1 \] Thus, we can substitute \( I_2 \) in terms of \( I_1 \) in our determinant. ### Step 4: Setting Up the Determinant The determinant we need to evaluate is: \[ D = \begin{vmatrix} I_1 & I_1^2 & I_2 \\ e^{I_1 + I_2} & I_2^2 & -1 \\ 1 & I_1^2 + I_2^2 & -1 \end{vmatrix} \] Substituting \( I_2 = -I_1 \): \[ D = \begin{vmatrix} I_1 & I_1^2 & -I_1 \\ e^0 & (-I_1)^2 & -1 \\ 1 & I_1^2 + (-I_1)^2 & -1 \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} I_1 & I_1^2 & -I_1 \\ 1 & I_1^2 & -1 \\ 1 & 2I_1^2 & -1 \end{vmatrix} \] ### Step 5: Evaluating the Determinant Notice that the second and third rows are linearly dependent (the third row is a scalar multiple of the second row). Therefore, the value of the determinant is: \[ D = 0 \] ### Final Answer Thus, the value of the determinant is: \[ \boxed{0} \]

To solve the given problem, we need to evaluate the determinant involving the integrals \( I_1 \) and \( I_2 \). Let's break down the steps systematically. ### Step 1: Evaluate \( I_1 \) The integral \( I_1 \) is defined as: \[ I_1 = \int_{1}^{\sin \theta} \frac{x}{1+x^2} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let I_(1)=int_(1)^(2)(x)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

If I_(1) =int _(0)^(1) (1+x ^(8))/(1+x^(4)) dx sand I_(2)=int _(0)^(1) (1+ x ^(9))/(1+x ^(2)) dx, then:

If I_(1)=int_(3pi)^(0) f(cos^(2)x)dx and I_(2)=int_(pi)^(0) f(cos^(2)x) then

Let I_(1) = int_(0)^(pi//4)1/((1+tanx)^(2))dx , I_(2) = int_(0)^(1)(dx)/((1+x)^(2)(1+x^(2))) Then find the value of (I_(1))/(I_(2)) .

If I_(1)=int_(e)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then

Let I_(1)=int_(0)^(1)(|lnx|)/(x^(2)+4x+1)dx and I_(2)=int_(1)^(oo)(lnx)/(x^(2)+4x+1)dx , then

If I_(1)=int_(1-x)^(x) x sin{x(1-x)}dx and I_(2)=int_(1-x)^(x) sin{x(1-x)}dx , then

Consider I_(1)=int_(10)^(20)(lnx)/(lnx+ln(30-x))dx and I_(2)=int_(20)^(30)(lnx)/(lnx +ln(50-x))dx . Then, the value of (I_(1))/(I_(2)) is

If I_(1)=int_(x)^(1)(1)/(1+t^(2)) dt and I_(2)=int_(1)^(1//x)(1)/(1+t^(2)) dt "for" x gt0 then,

(1) I=int(1)/((x^(2)+1)^(2))dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. Let f beintegrable over [0,a] for any real value of a. If I(1)=int(0...

    Text Solution

    |

  2. The value of underset(x rarr0)(lim)(2int(0)^(cos x ) cos^(-1) (t))/(2x...

    Text Solution

    |

  3. If I(1)= int(1)^(sin theta) (x)/(1+x^(2)) dx and I(2) int(1)^("cosec" ...

    Text Solution

    |

  4. If f(x)=int(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

    Text Solution

    |

  5. Let F(x) =f(x) +f((1)/(x)),"where" f(x)=int(1)^(x) (log t)/(1+t) dt Th...

    Text Solution

    |

  6. int(0)^(x) (bt cos 4t-a sin 4t)/(t^(2))dt=(a sin 4x)/(x) "foe all "x ...

    Text Solution

    |

  7. Let f:RtoR,f(x)={:(|x-[x]|,[x] "is odd"),(|x-[x+1]|,[x] "is even"):} w...

    Text Solution

    |

  8. If f(x) = sin x+cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} ...

    Text Solution

    |

  9. If x in[(4n+1)(pi)/(2),(4n+3)(pi)/(2)] and n in N, then the value of i...

    Text Solution

    |

  10. If f:R in R is continuous and differentiable function such that int(...

    Text Solution

    |

  11. Let l(1)=int(0)^(1)(e^(x))/(1+x)dx and l(2)=int(0)^(1)(x^(2))/(e^(x^(3...

    Text Solution

    |

  12. Let f(x)={(1-|x|","|x|le1),(0","|x|gt1):} and g(x)=f(x-1)"for all" x i...

    Text Solution

    |

  13. If f(x)=(x-1)/(x+1),f^(2)(x)=f(f(x)),……..,……..f^(k+1)(x)=f(f^(k)(x)),k...

    Text Solution

    |

  14. If f:R in R be such that f(x)=sqrt(sin(cosx))+"In"(-2cos^(2) x+3 cos...

    Text Solution

    |

  15. If int(e)^(x) t f(t)dt=sin x-x cos x-(x^(2))/(2) for all x in R-{0}, t...

    Text Solution

    |

  16. If f (x)= int(0)^(x) {f(t)}^(-1) dt and int(0)^(1) {f(t)}^(-1)= sqrt2

    Text Solution

    |

  17. If f(x) is differentiable and int0^(t^2) x f(x) dx=2/5t^5, then f(4/(2...

    Text Solution

    |

  18. The value of int(-2)^2|1-x^2|dx is

    Text Solution

    |

  19. The integral underset(0)overset(pi)int x f(sinx )dx is equal to

    Text Solution

    |

  20. If f(x) =(e^x)/(1+e^x), I1=int(f(-a))^(f(a)) xg(x(1-x))dx, and I2=int(...

    Text Solution

    |