Home
Class 12
MATHS
If f(x)=int(1)^(x) (log t)/(1+t) dt"then...

If `f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x))` is equal to

A

`(log _(e) x)^(2)`

B

`(2)/(3) log_(e) x`

C

`(1)/(2) log _(e) x`

D

`(1)/(2) (log _(e) x)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f(x) + f\left(\frac{1}{x}\right) \) where \[ f(x) = \int_{1}^{x} \frac{\log t}{1+t} \, dt. \] ### Step 1: Find \( f\left(\frac{1}{x}\right) \) We start by calculating \( f\left(\frac{1}{x}\right) \): \[ f\left(\frac{1}{x}\right) = \int_{1}^{\frac{1}{x}} \frac{\log t}{1+t} \, dt. \] ### Step 2: Change of Variables We will use the substitution \( t = \frac{1}{u} \). Then, \( dt = -\frac{1}{u^2} \, du \). When \( t = 1 \), \( u = 1 \) and when \( t = \frac{1}{x} \), \( u = x \). Thus, we can rewrite the integral: \[ f\left(\frac{1}{x}\right) = \int_{1}^{x} \frac{\log\left(\frac{1}{u}\right)}{1+\frac{1}{u}} \left(-\frac{1}{u^2}\right) \, du. \] ### Step 3: Simplify the Integral Now simplify the integrand: \[ \log\left(\frac{1}{u}\right) = -\log u, \] and \[ 1 + \frac{1}{u} = \frac{1+u}{u}. \] Thus, we have: \[ f\left(\frac{1}{x}\right) = \int_{1}^{x} \frac{-\log u}{\frac{1+u}{u}} \left(-\frac{1}{u^2}\right) \, du = \int_{1}^{x} \frac{\log u}{1+u} \, du. \] ### Step 4: Combine the Integrals Now we can combine \( f(x) \) and \( f\left(\frac{1}{x}\right) \): \[ f(x) + f\left(\frac{1}{x}\right) = \int_{1}^{x} \frac{\log t}{1+t} \, dt + \int_{1}^{x} \frac{\log t}{1+t} \, dt = 2 \int_{1}^{x} \frac{\log t}{1+t} \, dt. \] ### Step 5: Factor Out the Common Integral Now we can factor out the common integral: \[ f(x) + f\left(\frac{1}{x}\right) = 2 \int_{1}^{x} \frac{\log t}{1+t} \, dt. \] ### Step 6: Evaluate the Integral To evaluate the integral, we can use the property of logarithms and integrals: \[ \int \frac{\log t}{1+t} \, dt = \frac{1}{2} \log^2 t + C. \] Thus, we can evaluate: \[ \int_{1}^{x} \frac{\log t}{1+t} \, dt = \left[ \frac{1}{2} \log^2 t \right]_{1}^{x} = \frac{1}{2} \log^2 x - \frac{1}{2} \log^2 1 = \frac{1}{2} \log^2 x. \] ### Step 7: Final Result Putting it all together, we have: \[ f(x) + f\left(\frac{1}{x}\right) = 2 \cdot \frac{1}{2} \log^2 x = \log^2 x. \] Thus, the final answer is: \[ f(x) + f\left(\frac{1}{x}\right) = \log^2 x. \]

To solve the problem, we need to find the value of \( f(x) + f\left(\frac{1}{x}\right) \) where \[ f(x) = \int_{1}^{x} \frac{\log t}{1+t} \, dt. \] ### Step 1: Find \( f\left(\frac{1}{x}\right) \) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Statement-1: If f(x)=int_(1)^(x) (log_(e )t)/(1+t+t^(2))dt , then f(x)=f((1)/(x)) for all x gr 0 . Statement-2:If f(x) =int_(1)^(x) (log_(e )t)/(1+t)dt , then f(x)+f((1)/(x))=((log_(e )x)^(2))/(2)

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Let F(x) =f(x) +f((1)/(x)),"where" f(x)=int_(1)^(x) (log t)/(1+t) dt Then F (e) equals

If f(x)=int_(1)^(x)(logt)/(1+t+t^(2)) , AAx ge 1 , then f(2) is equal to

" If " f(x) =int_(0)^(x)" t sin t dt tehn " f(x) is

If int_(0)^(x)f(t)dt=x^2+int_(x)^(1)\ t^2\ f(t)dt , then f((1)/(2)) is equal to (a) (24)/(25) (b) (4)/(25) (c) (4)/(5) (d) (2)/(5)

If f(x)=cosx-int_0^x(x-t)f(t)dt ,t h e nf^(prime)(x)+f(x) is equal to a) -cosx (b) -sinx c) int_0^x(x-t)f(t)dt (d) 0

If f(x)=int_(0)^(1)(dt)/(1+|x-t|),x in R . The value of f'(1//2) is equal to

If f(x)=x+int_0^1t(x+t)f(t) dt ,then the value of 23/2f(0) is equal to _________

Let f(x) = int_(-2)^(x)|t + 1|dt , then

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. The value of underset(x rarr0)(lim)(2int(0)^(cos x ) cos^(-1) (t))/(2x...

    Text Solution

    |

  2. If I(1)= int(1)^(sin theta) (x)/(1+x^(2)) dx and I(2) int(1)^("cosec" ...

    Text Solution

    |

  3. If f(x)=int(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

    Text Solution

    |

  4. Let F(x) =f(x) +f((1)/(x)),"where" f(x)=int(1)^(x) (log t)/(1+t) dt Th...

    Text Solution

    |

  5. int(0)^(x) (bt cos 4t-a sin 4t)/(t^(2))dt=(a sin 4x)/(x) "foe all "x ...

    Text Solution

    |

  6. Let f:RtoR,f(x)={:(|x-[x]|,[x] "is odd"),(|x-[x+1]|,[x] "is even"):} w...

    Text Solution

    |

  7. If f(x) = sin x+cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} ...

    Text Solution

    |

  8. If x in[(4n+1)(pi)/(2),(4n+3)(pi)/(2)] and n in N, then the value of i...

    Text Solution

    |

  9. If f:R in R is continuous and differentiable function such that int(...

    Text Solution

    |

  10. Let l(1)=int(0)^(1)(e^(x))/(1+x)dx and l(2)=int(0)^(1)(x^(2))/(e^(x^(3...

    Text Solution

    |

  11. Let f(x)={(1-|x|","|x|le1),(0","|x|gt1):} and g(x)=f(x-1)"for all" x i...

    Text Solution

    |

  12. If f(x)=(x-1)/(x+1),f^(2)(x)=f(f(x)),……..,……..f^(k+1)(x)=f(f^(k)(x)),k...

    Text Solution

    |

  13. If f:R in R be such that f(x)=sqrt(sin(cosx))+"In"(-2cos^(2) x+3 cos...

    Text Solution

    |

  14. If int(e)^(x) t f(t)dt=sin x-x cos x-(x^(2))/(2) for all x in R-{0}, t...

    Text Solution

    |

  15. If f (x)= int(0)^(x) {f(t)}^(-1) dt and int(0)^(1) {f(t)}^(-1)= sqrt2

    Text Solution

    |

  16. If f(x) is differentiable and int0^(t^2) x f(x) dx=2/5t^5, then f(4/(2...

    Text Solution

    |

  17. The value of int(-2)^2|1-x^2|dx is

    Text Solution

    |

  18. The integral underset(0)overset(pi)int x f(sinx )dx is equal to

    Text Solution

    |

  19. If f(x) =(e^x)/(1+e^x), I1=int(f(-a))^(f(a)) xg(x(1-x))dx, and I2=int(...

    Text Solution

    |

  20. The value of int(-2)^(2) |[x]| dx is equal to

    Text Solution

    |