Home
Class 12
MATHS
Let F(x) =f(x) +f((1)/(x)),"where" f(x)=...

Let `F(x) =f(x) +f((1)/(x)),"where" f(x)=int_(1)^(x) (log t)/(1+t) dt` Then F (e) equals

A

1

B

2

C

`1//2`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( F(e) \) where \( F(x) = f(x) + f\left(\frac{1}{x}\right) \) and \( f(x) = \int_{1}^{x} \frac{\log t}{1+t} dt \). ### Step 1: Find \( f\left(\frac{1}{x}\right) \) We start by calculating \( f\left(\frac{1}{x}\right) \): \[ f\left(\frac{1}{x}\right) = \int_{1}^{\frac{1}{x}} \frac{\log t}{1+t} dt \] To evaluate this integral, we will use a substitution. Let \( t = \frac{1}{u} \), then \( dt = -\frac{1}{u^2} du \). The limits change as follows: - When \( t = 1 \), \( u = 1 \) - When \( t = \frac{1}{x} \), \( u = x \) Thus, we have: \[ f\left(\frac{1}{x}\right) = \int_{1}^{x} \frac{\log\left(\frac{1}{u}\right)}{1+\frac{1}{u}} \left(-\frac{1}{u^2}\right) du \] ### Step 2: Simplify the Integral Now, we simplify the integrand: \[ \log\left(\frac{1}{u}\right) = -\log u \] \[ 1 + \frac{1}{u} = \frac{u+1}{u} \] Thus, the integrand becomes: \[ \frac{-\log u}{\frac{u+1}{u}} \left(-\frac{1}{u^2}\right) = \frac{\log u}{1 + u} du \] So we have: \[ f\left(\frac{1}{x}\right) = \int_{1}^{x} \frac{\log u}{1+u} du \] ### Step 3: Combine \( f(x) \) and \( f\left(\frac{1}{x}\right) \) Now, we can express \( F(x) \): \[ F(x) = f(x) + f\left(\frac{1}{x}\right) = \int_{1}^{x} \frac{\log t}{1+t} dt + \int_{1}^{x} \frac{\log u}{1+u} du \] Since both integrals have the same limits and integrands, we can combine them: \[ F(x) = \int_{1}^{x} \frac{\log t}{1+t} dt + \int_{1}^{x} \frac{\log t}{1+t} dt = 2 \int_{1}^{x} \frac{\log t}{1+t} dt \] ### Step 4: Evaluate \( F(e) \) Now we need to evaluate \( F(e) \): \[ F(e) = 2 \int_{1}^{e} \frac{\log t}{1+t} dt \] ### Step 5: Calculate \( f(x) \) We can find \( f(x) \) directly: \[ f(x) = \int_{1}^{x} \frac{\log t}{1+t} dt \] Using integration by parts or known results, we find: \[ f(x) = \frac{1}{2} \log^2 x \] ### Step 6: Substitute \( x = e \) Now substituting \( x = e \): \[ f(e) = \frac{1}{2} \log^2 e = \frac{1}{2} (1)^2 = \frac{1}{2} \] Thus: \[ F(e) = f(e) + f\left(\frac{1}{e}\right) = f(e) + f(e) = 2f(e) = 2 \cdot \frac{1}{2} = 1 \] ### Final Answer \[ F(e) = 1 \]

To solve the problem, we need to find \( F(e) \) where \( F(x) = f(x) + f\left(\frac{1}{x}\right) \) and \( f(x) = \int_{1}^{x} \frac{\log t}{1+t} dt \). ### Step 1: Find \( f\left(\frac{1}{x}\right) \) We start by calculating \( f\left(\frac{1}{x}\right) \): \[ f\left(\frac{1}{x}\right) = \int_{1}^{\frac{1}{x}} \frac{\log t}{1+t} dt \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

If F(x) =int_(x^(2))^(x^(3)) log t dt (x gt 0) , then F'(x) equals

Let f(x) = int_(-2)^(x)|t + 1|dt , then

If f(x)=int_(-1)^(x)|t|dt , then for any xge0,f(x) equals

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

If f(x)=int_(1)^(x)(logt)/(1+t+t^(2)) , AAx ge 1 , then f(2) is equal to

If F(x) =(1)/(x^(2))overset(x)underset(4)int [4t^(2)-2F'(t)]dt then F'(4) equals

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If I(1)= int(1)^(sin theta) (x)/(1+x^(2)) dx and I(2) int(1)^("cosec" ...

    Text Solution

    |

  2. If f(x)=int(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

    Text Solution

    |

  3. Let F(x) =f(x) +f((1)/(x)),"where" f(x)=int(1)^(x) (log t)/(1+t) dt Th...

    Text Solution

    |

  4. int(0)^(x) (bt cos 4t-a sin 4t)/(t^(2))dt=(a sin 4x)/(x) "foe all "x ...

    Text Solution

    |

  5. Let f:RtoR,f(x)={:(|x-[x]|,[x] "is odd"),(|x-[x+1]|,[x] "is even"):} w...

    Text Solution

    |

  6. If f(x) = sin x+cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} ...

    Text Solution

    |

  7. If x in[(4n+1)(pi)/(2),(4n+3)(pi)/(2)] and n in N, then the value of i...

    Text Solution

    |

  8. If f:R in R is continuous and differentiable function such that int(...

    Text Solution

    |

  9. Let l(1)=int(0)^(1)(e^(x))/(1+x)dx and l(2)=int(0)^(1)(x^(2))/(e^(x^(3...

    Text Solution

    |

  10. Let f(x)={(1-|x|","|x|le1),(0","|x|gt1):} and g(x)=f(x-1)"for all" x i...

    Text Solution

    |

  11. If f(x)=(x-1)/(x+1),f^(2)(x)=f(f(x)),……..,……..f^(k+1)(x)=f(f^(k)(x)),k...

    Text Solution

    |

  12. If f:R in R be such that f(x)=sqrt(sin(cosx))+"In"(-2cos^(2) x+3 cos...

    Text Solution

    |

  13. If int(e)^(x) t f(t)dt=sin x-x cos x-(x^(2))/(2) for all x in R-{0}, t...

    Text Solution

    |

  14. If f (x)= int(0)^(x) {f(t)}^(-1) dt and int(0)^(1) {f(t)}^(-1)= sqrt2

    Text Solution

    |

  15. If f(x) is differentiable and int0^(t^2) x f(x) dx=2/5t^5, then f(4/(2...

    Text Solution

    |

  16. The value of int(-2)^2|1-x^2|dx is

    Text Solution

    |

  17. The integral underset(0)overset(pi)int x f(sinx )dx is equal to

    Text Solution

    |

  18. If f(x) =(e^x)/(1+e^x), I1=int(f(-a))^(f(a)) xg(x(1-x))dx, and I2=int(...

    Text Solution

    |

  19. The value of int(-2)^(2) |[x]| dx is equal to

    Text Solution

    |

  20. The value int^(2)(-2) {p" In"((1+x)/(1-x))+q" In "((1-x)/(1+x))-2+r}...

    Text Solution

    |