Home
Class 12
MATHS
If x in[(4n+1)(pi)/(2),(4n+3)(pi)/(2)] a...

If `x in[(4n+1)(pi)/(2),(4n+3)(pi)/(2)]` and `n in N`, then the value of `int_(0)^(x) [cos t] dt`, is

A

`(2n-1)(pi)/(2)-x`

B

`(2n-1)(pi)/(pi)/(2)-x`

C

`(2n+1)(pi)/(2)-x`

D

`(2n+1)(pi)/(2)+x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the definite integral of the greatest integer function of the cosine function over the specified limits. Let's break it down step by step. ### Step 1: Understand the limits of integration Given that \( x \) is in the interval \(\left[\frac{(4n+1)\pi}{2}, \frac{(4n+3)\pi}{2}\right]\), we can identify that \( x \) is between two specific points on the cosine wave. ### Step 2: Break down the integral We can express the integral as: \[ I = \int_0^x \lfloor \cos t \rfloor \, dt \] Since \( \lfloor \cos t \rfloor \) takes values based on the cosine function, we need to analyze the behavior of \(\cos t\) within the limits of integration. ### Step 3: Determine the behavior of \(\cos t\) The cosine function oscillates between -1 and 1. In the interval \(\left[0, \frac{(4n+3)\pi}{2}\right]\), the cosine function will take the following values: - From \(0\) to \(\frac{\pi}{2}\), \(\cos t\) decreases from \(1\) to \(0\). - From \(\frac{\pi}{2}\) to \(\frac{3\pi}{2}\), \(\cos t\) decreases from \(0\) to \(-1\). - From \(\frac{3\pi}{2}\) to \(2\pi\), \(\cos t\) increases from \(-1\) to \(0\). ### Step 4: Split the integral based on the intervals We can split the integral at the points where \(\cos t\) changes its value: \[ I = \int_0^{\frac{\pi}{2}} \lfloor \cos t \rfloor \, dt + \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \lfloor \cos t \rfloor \, dt + \int_{\frac{3\pi}{2}}^{x} \lfloor \cos t \rfloor \, dt \] ### Step 5: Evaluate each integral 1. **From \(0\) to \(\frac{\pi}{2}\)**: \(\lfloor \cos t \rfloor = 1\) for \(t \in [0, \frac{\pi}{2})\). \[ \int_0^{\frac{\pi}{2}} 1 \, dt = \frac{\pi}{2} \] 2. **From \(\frac{\pi}{2}\) to \(\frac{3\pi}{2}\)**: \(\lfloor \cos t \rfloor = -1\) for \(t \in (\frac{\pi}{2}, \frac{3\pi}{2})\). \[ \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} -1 \, dt = -\left(\frac{3\pi}{2} - \frac{\pi}{2}\right) = -\pi \] 3. **From \(\frac{3\pi}{2}\) to \(x\)**: For \(t \in \left(\frac{3\pi}{2}, x\right)\), \(\lfloor \cos t \rfloor = -1\) since \(x\) is in the interval where \(\cos t\) is negative. \[ \int_{\frac{3\pi}{2}}^{x} -1 \, dt = -\left(x - \frac{3\pi}{2}\right) = -x + \frac{3\pi}{2} \] ### Step 6: Combine the results Now, we can combine all parts: \[ I = \frac{\pi}{2} - \pi - x + \frac{3\pi}{2} \] Simplifying this gives: \[ I = -x + \frac{3\pi}{2} - \pi + \frac{\pi}{2} = -x + \frac{\pi}{2} \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{\pi}{2} - x \]

To solve the problem, we need to evaluate the definite integral of the greatest integer function of the cosine function over the specified limits. Let's break it down step by step. ### Step 1: Understand the limits of integration Given that \( x \) is in the interval \(\left[\frac{(4n+1)\pi}{2}, \frac{(4n+3)\pi}{2}\right]\), we can identify that \( x \) is between two specific points on the cosine wave. ### Step 2: Break down the integral We can express the integral as: \[ ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2) | cos ""(pi)/( 2) t|dt is equal to

I_n = int_0^(pi/4) tan^n x dx , then the value of n(l_(n-1) + I_(n+1)) is

If the value of the definite integral int_0^1(sin^(-1)sqrt(x))/(x^2-x+1)dx is (pi^2)/(sqrt(n)) (where n in N), then the value of n/(27) is

If a=cos""(4pi)/(3)+isin""(4pi)/(3) , then the value of ((1+a)/(2))^(3n) is :

For each ositive integer n, define a function f _(n) on [0,1] as follows: f _(n((x)={{:(0, if , x =0),(sin ""(pi)/(2n), if , 0 lt x le 1/n),( sin ""(2pi)/(2n) , if , 1/n lt x le 2/n), (sin ""(3pi)/(2pi), if, 2/n lt x le 3/n), (sin "'(npi)/(2pi) , if, (n-1)/(n) lt x le 1):} Then the value of lim _(x to oo)int _(0)^(1) f_(n) (x) dx is:

Let I_(n) = int_(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx , n in N then

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

The value of int_0^x[cost]dt ,x in [(4n+1)pi/2,(4n+3)pi/2]a n dn in N , is equal to where [.] represents greatest integer function. pi/2(2n-1)-2x pi/2(2n-1)+x pi/2(2n+1)-x (d) pi/2(2n+1)+x

For a positive integer n, let I _(n) int _(-pi)^(pi) ((pi)/(2) -|x|) cos nx dx Find the value of [I _(1) + I _(3) +I_(4)] where [.] denotes greatest integer function.

For a positive integer n, let I _(n) =int _(-pi)^(pi) ((pi)/(2) -|x|) cos nx dx Find the value of [I _(1) + I _(3) +I_(4)] (where [.] denotes greatest integer function) .

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. Let f:RtoR,f(x)={:(|x-[x]|,[x] "is odd"),(|x-[x+1]|,[x] "is even"):} w...

    Text Solution

    |

  2. If f(x) = sin x+cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} ...

    Text Solution

    |

  3. If x in[(4n+1)(pi)/(2),(4n+3)(pi)/(2)] and n in N, then the value of i...

    Text Solution

    |

  4. If f:R in R is continuous and differentiable function such that int(...

    Text Solution

    |

  5. Let l(1)=int(0)^(1)(e^(x))/(1+x)dx and l(2)=int(0)^(1)(x^(2))/(e^(x^(3...

    Text Solution

    |

  6. Let f(x)={(1-|x|","|x|le1),(0","|x|gt1):} and g(x)=f(x-1)"for all" x i...

    Text Solution

    |

  7. If f(x)=(x-1)/(x+1),f^(2)(x)=f(f(x)),……..,……..f^(k+1)(x)=f(f^(k)(x)),k...

    Text Solution

    |

  8. If f:R in R be such that f(x)=sqrt(sin(cosx))+"In"(-2cos^(2) x+3 cos...

    Text Solution

    |

  9. If int(e)^(x) t f(t)dt=sin x-x cos x-(x^(2))/(2) for all x in R-{0}, t...

    Text Solution

    |

  10. If f (x)= int(0)^(x) {f(t)}^(-1) dt and int(0)^(1) {f(t)}^(-1)= sqrt2

    Text Solution

    |

  11. If f(x) is differentiable and int0^(t^2) x f(x) dx=2/5t^5, then f(4/(2...

    Text Solution

    |

  12. The value of int(-2)^2|1-x^2|dx is

    Text Solution

    |

  13. The integral underset(0)overset(pi)int x f(sinx )dx is equal to

    Text Solution

    |

  14. If f(x) =(e^x)/(1+e^x), I1=int(f(-a))^(f(a)) xg(x(1-x))dx, and I2=int(...

    Text Solution

    |

  15. The value of int(-2)^(2) |[x]| dx is equal to

    Text Solution

    |

  16. The value int^(2)(-2) {p" In"((1+x)/(1-x))+q" In "((1-x)/(1+x))-2+r}...

    Text Solution

    |

  17. 7(int0^1(x^4(1-x)^4dx)/(1+x^2)+pi) is equal to

    Text Solution

    |

  18. The value of underset(xrarr0)(lim)(1)/(x^(3)) int(0)^(x)(tln(1+t))/(t^...

    Text Solution

    |

  19. Let f be the function defined on [-pi,pi] given by f(0)=9 and f(x)=sin...

    Text Solution

    |

  20. Let f be a real valued functional defined on the interval (-1,1) such ...

    Text Solution

    |