Home
Class 12
MATHS
If f:R in R is continuous and differenti...

If `f:R in R` is continuous and differentiable function such that
`int_(-1)^(x) f(t)dt+f'''(3) int_(x)^(0) dt=int_(1)^(x) t^(3)dt-f'(1)int_(0)^(x) t^(2)dt+f'(2) int_(x)^(3) r dt`, then the value of f'(4), is

A

`48-8f'(1)+f'(2)`

B

`48-8f'(1)-f''(2)`

C

`48+8f'(1)-f'(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we start with the equation provided: \[ \int_{-1}^{x} f(t) dt + f'''(3) \int_{x}^{0} dt = \int_{1}^{x} t^3 dt - f'(1) \int_{0}^{x} t^2 dt + f'(2) \int_{x}^{3} t dt \] ### Step 1: Simplify the Integrals First, we simplify the integrals on both sides of the equation. The integral \(\int_{x}^{0} dt\) can be rewritten as \(-\int_{0}^{x} dt = -x\). So, the equation becomes: \[ \int_{-1}^{x} f(t) dt - f'''(3)x = \int_{1}^{x} t^3 dt - f'(1) \int_{0}^{x} t^2 dt + f'(2) \int_{x}^{3} t dt \] ### Step 2: Evaluate the Right Side Integrals Now, we evaluate the right-hand side integrals: 1. \(\int_{1}^{x} t^3 dt = \left[\frac{t^4}{4}\right]_{1}^{x} = \frac{x^4}{4} - \frac{1}{4}\) 2. \(\int_{0}^{x} t^2 dt = \left[\frac{t^3}{3}\right]_{0}^{x} = \frac{x^3}{3}\) 3. \(\int_{x}^{3} t dt = \left[\frac{t^2}{2}\right]_{x}^{3} = \frac{9}{2} - \frac{x^2}{2}\) Substituting these back into the equation gives: \[ \int_{-1}^{x} f(t) dt - f'''(3)x = \left(\frac{x^4}{4} - \frac{1}{4}\right) - f'(1)\left(\frac{x^3}{3}\right) + f'(2)\left(\frac{9}{2} - \frac{x^2}{2}\right) \] ### Step 3: Rearranging the Equation Rearranging the equation, we have: \[ \int_{-1}^{x} f(t) dt - f'''(3)x = \frac{x^4}{4} - \frac{1}{4} - \frac{f'(1)x^3}{3} + \frac{9f'(2)}{2} - \frac{f'(2)x^2}{2} \] ### Step 4: Differentiate Both Sides Next, we differentiate both sides with respect to \(x\): Using the Fundamental Theorem of Calculus and Leibniz's rule, we differentiate: \[ f(x) - f'''(3) = x^3 - f'(1)x^2 + \frac{9f'(2)}{2} - f'(2)x \] ### Step 5: Further Differentiate Now, we differentiate again: \[ f'(x) = 3x^2 - 2f'(1)x - f'(2) \] ### Step 6: Substitute \(x = 4\) Now we substitute \(x = 4\) to find \(f'(4)\): \[ f'(4) = 3(4^2) - 2f'(1)(4) - f'(2) \] Calculating \(f'(4)\): \[ f'(4) = 3(16) - 8f'(1) - f'(2) = 48 - 8f'(1) - f'(2) \] ### Final Answer Thus, the value of \(f'(4)\) is: \[ f'(4) = 48 - 8f'(1) - f'(2) \]

To solve the given problem step by step, we start with the equation provided: \[ \int_{-1}^{x} f(t) dt + f'''(3) \int_{x}^{0} dt = \int_{1}^{x} t^3 dt - f'(1) \int_{0}^{x} t^2 dt + f'(2) \int_{x}^{3} t dt \] ### Step 1: Simplify the Integrals First, we simplify the integrals on both sides of the equation. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

if f(x) is a differential function such that f(x)=int_(0)^(x)(1+2xf(t))dt&f(1)=e , then Q. int_(0)^(1)f(x)dx=

Let f(x) = int_(-2)^(x)|t + 1|dt , then

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f:R to R be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

If F(x)=int_(1)^(x) f(t) dt ,where f(t)=int_(1)^(t^(2))(sqrt(1+u^(4)))/(u) du , then the value of F''(2) equals to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If f(x) = sin x+cos x and g(x) = {:{((|x|)/(x),","x ne0),(2,","x=0):} ...

    Text Solution

    |

  2. If x in[(4n+1)(pi)/(2),(4n+3)(pi)/(2)] and n in N, then the value of i...

    Text Solution

    |

  3. If f:R in R is continuous and differentiable function such that int(...

    Text Solution

    |

  4. Let l(1)=int(0)^(1)(e^(x))/(1+x)dx and l(2)=int(0)^(1)(x^(2))/(e^(x^(3...

    Text Solution

    |

  5. Let f(x)={(1-|x|","|x|le1),(0","|x|gt1):} and g(x)=f(x-1)"for all" x i...

    Text Solution

    |

  6. If f(x)=(x-1)/(x+1),f^(2)(x)=f(f(x)),……..,……..f^(k+1)(x)=f(f^(k)(x)),k...

    Text Solution

    |

  7. If f:R in R be such that f(x)=sqrt(sin(cosx))+"In"(-2cos^(2) x+3 cos...

    Text Solution

    |

  8. If int(e)^(x) t f(t)dt=sin x-x cos x-(x^(2))/(2) for all x in R-{0}, t...

    Text Solution

    |

  9. If f (x)= int(0)^(x) {f(t)}^(-1) dt and int(0)^(1) {f(t)}^(-1)= sqrt2

    Text Solution

    |

  10. If f(x) is differentiable and int0^(t^2) x f(x) dx=2/5t^5, then f(4/(2...

    Text Solution

    |

  11. The value of int(-2)^2|1-x^2|dx is

    Text Solution

    |

  12. The integral underset(0)overset(pi)int x f(sinx )dx is equal to

    Text Solution

    |

  13. If f(x) =(e^x)/(1+e^x), I1=int(f(-a))^(f(a)) xg(x(1-x))dx, and I2=int(...

    Text Solution

    |

  14. The value of int(-2)^(2) |[x]| dx is equal to

    Text Solution

    |

  15. The value int^(2)(-2) {p" In"((1+x)/(1-x))+q" In "((1-x)/(1+x))-2+r}...

    Text Solution

    |

  16. 7(int0^1(x^4(1-x)^4dx)/(1+x^2)+pi) is equal to

    Text Solution

    |

  17. The value of underset(xrarr0)(lim)(1)/(x^(3)) int(0)^(x)(tln(1+t))/(t^...

    Text Solution

    |

  18. Let f be the function defined on [-pi,pi] given by f(0)=9 and f(x)=sin...

    Text Solution

    |

  19. Let f be a real valued functional defined on the interval (-1,1) such ...

    Text Solution

    |

  20. For any real number x, let [x] denote the largest integer less than or...

    Text Solution

    |