Home
Class 12
MATHS
Let l(1)=int(0)^(1)(e^(x))/(1+x)dx and l...

Let `l_(1)=int_(0)^(1)(e^(x))/(1+x)dx and l_(2)=int_(0)^(1)(x^(2))/(e^(x^(3)(2-x^(3))))dx. "Then"(l_(1))/(l_(2))` is equal to

A

`(3)/(e )`

B

`(e )/(3)`

C

3e

D

`(1)/(3e)`

Text Solution

Verified by Experts

The correct Answer is:
C

We have,
`I_(1)=overset(1)underset(0)int (e^(x))/(1+x)dx`and `I_(2)=overset(1)underset(0)int (x^(2))/(e^(x^(3))(2x^(3)))dx`
`:. I_(2)=(1)/(3)overset(1)underset(0)int (1)/(e^(x^(3))(2-x^(3)))3x^(2)dx`
`rArr I_(2)=(1)/(3)overset(1)underset(0)int (1)/(e(t)(2-t))dt`where `t=x^(3)`
`rArr I_(2)=(1)/(3)overset(1)underset(0)int (1)/(e^(1-t)(1+t))dt" "[:' overset(a)underset(0)int f(x)dx=overset(a)underset(0)int f(a-x)]`
`rArr I_(2)=(1)/(3e)overset(1)underset(0)int (e^(t))/(1+t)dt rArr I_(2)=(1)/(3e)I_(2)=(1)/(3e)I_(1)rArr(I_(1))/(I_(2))=3e`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)x e^(x^(2)) dx

int_(-1)^(1)e^(2x)dx

int_(0)^(1)e^(2x)e^(e^(x) dx =)

If I_(1)=int_(0)^((pi)/(2))e^(sinx)(1+x cos x)dx and I_(2)=int_(0)^((pi)/(2))e^(cosx)(1-x sin x)dx, then [(I_(1))/(I_(2))] is equal to (where [x] denotes the greatest integer less than or equal to x)

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

int_(0)^(2) (e^(-1//x))/(x^(2)) dx

L e tI_1=int_0^1(e^xdx)/(1+x) a n dI_2=int_0^1(x^2dx)/(e^(x^3)(2-x^3))dot tehn (I_1)/(I_2) is equal to (a)3/e (b) e/3 (c) 3e (d) 1/(3e)

If I_(1)=int_(e)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then

int_0^1 e^(2-3x)dx

l=int(dx)/(1+e^(x)) is equal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If x in[(4n+1)(pi)/(2),(4n+3)(pi)/(2)] and n in N, then the value of i...

    Text Solution

    |

  2. If f:R in R is continuous and differentiable function such that int(...

    Text Solution

    |

  3. Let l(1)=int(0)^(1)(e^(x))/(1+x)dx and l(2)=int(0)^(1)(x^(2))/(e^(x^(3...

    Text Solution

    |

  4. Let f(x)={(1-|x|","|x|le1),(0","|x|gt1):} and g(x)=f(x-1)"for all" x i...

    Text Solution

    |

  5. If f(x)=(x-1)/(x+1),f^(2)(x)=f(f(x)),……..,……..f^(k+1)(x)=f(f^(k)(x)),k...

    Text Solution

    |

  6. If f:R in R be such that f(x)=sqrt(sin(cosx))+"In"(-2cos^(2) x+3 cos...

    Text Solution

    |

  7. If int(e)^(x) t f(t)dt=sin x-x cos x-(x^(2))/(2) for all x in R-{0}, t...

    Text Solution

    |

  8. If f (x)= int(0)^(x) {f(t)}^(-1) dt and int(0)^(1) {f(t)}^(-1)= sqrt2

    Text Solution

    |

  9. If f(x) is differentiable and int0^(t^2) x f(x) dx=2/5t^5, then f(4/(2...

    Text Solution

    |

  10. The value of int(-2)^2|1-x^2|dx is

    Text Solution

    |

  11. The integral underset(0)overset(pi)int x f(sinx )dx is equal to

    Text Solution

    |

  12. If f(x) =(e^x)/(1+e^x), I1=int(f(-a))^(f(a)) xg(x(1-x))dx, and I2=int(...

    Text Solution

    |

  13. The value of int(-2)^(2) |[x]| dx is equal to

    Text Solution

    |

  14. The value int^(2)(-2) {p" In"((1+x)/(1-x))+q" In "((1-x)/(1+x))-2+r}...

    Text Solution

    |

  15. 7(int0^1(x^4(1-x)^4dx)/(1+x^2)+pi) is equal to

    Text Solution

    |

  16. The value of underset(xrarr0)(lim)(1)/(x^(3)) int(0)^(x)(tln(1+t))/(t^...

    Text Solution

    |

  17. Let f be the function defined on [-pi,pi] given by f(0)=9 and f(x)=sin...

    Text Solution

    |

  18. Let f be a real valued functional defined on the interval (-1,1) such ...

    Text Solution

    |

  19. For any real number x, let [x] denote the largest integer less than or...

    Text Solution

    |

  20. about to only mathematics

    Text Solution

    |