Home
Class 12
MATHS
If f(x)=(x-1)/(x+1),f^(2)(x)=f(f(x)),……....

If f(x)`=(x-1)/(x+1),f^(2)(x)=f(f(x)),……..,……..f^(k+1)(x)=f(f^(k)(x))`,k=1,2,3,……and `g(x)=f^(1998)(x)` then `int_(1//e)^(1) g(x)dx` is equal to

A

0

B

1

C

-1

D

e

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the definitions and calculations provided in the video transcript. ### Step 1: Define the function f(x) Given: \[ f(x) = \frac{x - 1}{x + 1} \] ### Step 2: Calculate f²(x) To find \( f²(x) = f(f(x)) \): 1. Substitute \( f(x) \) into itself: \[ f(f(x)) = f\left(\frac{x - 1}{x + 1}\right) \] 2. Calculate: \[ f\left(\frac{x - 1}{x + 1}\right) = \frac{\frac{x - 1}{x + 1} - 1}{\frac{x - 1}{x + 1} + 1} \] 3. Simplify the numerator: \[ \frac{x - 1 - (x + 1)}{x + 1} = \frac{x - 1 - x - 1}{x + 1} = \frac{-2}{x + 1} \] 4. Simplify the denominator: \[ \frac{x - 1 + (x + 1)}{x + 1} = \frac{x - 1 + x + 1}{x + 1} = \frac{2x}{x + 1} \] 5. Thus, we have: \[ f²(x) = \frac{-2/(x + 1)}{2x/(x + 1)} = \frac{-2}{2x} = \frac{-1}{x} \] ### Step 3: Calculate f⁴(x) Next, we calculate \( f⁴(x) = f(f²(x)) \): 1. Substitute \( f²(x) \): \[ f(f²(x)) = f\left(\frac{-1}{x}\right) \] 2. Calculate: \[ f\left(\frac{-1}{x}\right) = \frac{\frac{-1}{x} - 1}{\frac{-1}{x} + 1} \] 3. Simplify the numerator: \[ \frac{-1 - x}{x} = \frac{-(x + 1)}{x} \] 4. Simplify the denominator: \[ \frac{-1 + x}{x} = \frac{x - 1}{x} \] 5. Thus: \[ f⁴(x) = \frac{-(x + 1)/x}{(x - 1)/x} = \frac{-(x + 1)}{(x - 1)} = \frac{1 + x}{1 - x} \] ### Step 4: Calculate g(x) = f^(1998)(x) Continuing this pattern, we can see that: - \( f^2(x) = \frac{-1}{x} \) - \( f^4(x) = x \) - \( f^6(x) = \frac{-1}{x} \) - \( f^8(x) = x \) This indicates a periodicity of 2: - If \( k \) is even, \( f^k(x) = x \) - If \( k \) is odd, \( f^k(x) = \frac{-1}{x} \) Since \( 1998 \) is even: \[ g(x) = f^{1998}(x) = x \] ### Step 5: Evaluate the integral Now we need to evaluate: \[ \int_{1/e}^{1} g(x) \, dx = \int_{1/e}^{1} x \, dx \] Calculating the integral: \[ \int x \, dx = \frac{x^2}{2} \Big|_{1/e}^{1} = \frac{1^2}{2} - \frac{(1/e)^2}{2} = \frac{1}{2} - \frac{1/e^2}{2} = \frac{1}{2} - \frac{1}{2e^2} \] Thus: \[ = \frac{1}{2} - \frac{1}{2e^2} = \frac{e^2 - 1}{2e^2} \] ### Final Answer The value of the integral is: \[ \frac{e^2 - 1}{2e^2} \]

To solve the problem step by step, we will follow the definitions and calculations provided in the video transcript. ### Step 1: Define the function f(x) Given: \[ f(x) = \frac{x - 1}{x + 1} \] ### Step 2: Calculate f²(x) To find \( f²(x) = f(f(x)) \): ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If f(0)=2,f'(x)=f(x),phi(x)=x+f(x)" then "int_(0)^(1)f(x)phi(x)dx is

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=|x-1|" and "g(x)=f(f(f(x))) , then for xgt2,g'(x) is equal to

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

If int (e^x-1)/(e^x+1)dx=f(x)+C, then f(x) is equal to

If f'(x) = f(x)+ int _(0)^(1)f (x) dx and given f (0) =1, then int f (x) dx is equal to :

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If 2f(x)+f(-x)=1/xsin(x-1/x) then the value of int_(1/e)^e f(x)d x is

If f (6-x ) =f (x), for all then 1/5 int _(2)^(3) x [f (x) + f (x+1)]dx is equal to :

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. Let l(1)=int(0)^(1)(e^(x))/(1+x)dx and l(2)=int(0)^(1)(x^(2))/(e^(x^(3...

    Text Solution

    |

  2. Let f(x)={(1-|x|","|x|le1),(0","|x|gt1):} and g(x)=f(x-1)"for all" x i...

    Text Solution

    |

  3. If f(x)=(x-1)/(x+1),f^(2)(x)=f(f(x)),……..,……..f^(k+1)(x)=f(f^(k)(x)),k...

    Text Solution

    |

  4. If f:R in R be such that f(x)=sqrt(sin(cosx))+"In"(-2cos^(2) x+3 cos...

    Text Solution

    |

  5. If int(e)^(x) t f(t)dt=sin x-x cos x-(x^(2))/(2) for all x in R-{0}, t...

    Text Solution

    |

  6. If f (x)= int(0)^(x) {f(t)}^(-1) dt and int(0)^(1) {f(t)}^(-1)= sqrt2

    Text Solution

    |

  7. If f(x) is differentiable and int0^(t^2) x f(x) dx=2/5t^5, then f(4/(2...

    Text Solution

    |

  8. The value of int(-2)^2|1-x^2|dx is

    Text Solution

    |

  9. The integral underset(0)overset(pi)int x f(sinx )dx is equal to

    Text Solution

    |

  10. If f(x) =(e^x)/(1+e^x), I1=int(f(-a))^(f(a)) xg(x(1-x))dx, and I2=int(...

    Text Solution

    |

  11. The value of int(-2)^(2) |[x]| dx is equal to

    Text Solution

    |

  12. The value int^(2)(-2) {p" In"((1+x)/(1-x))+q" In "((1-x)/(1+x))-2+r}...

    Text Solution

    |

  13. 7(int0^1(x^4(1-x)^4dx)/(1+x^2)+pi) is equal to

    Text Solution

    |

  14. The value of underset(xrarr0)(lim)(1)/(x^(3)) int(0)^(x)(tln(1+t))/(t^...

    Text Solution

    |

  15. Let f be the function defined on [-pi,pi] given by f(0)=9 and f(x)=sin...

    Text Solution

    |

  16. Let f be a real valued functional defined on the interval (-1,1) such ...

    Text Solution

    |

  17. For any real number x, let [x] denote the largest integer less than or...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. Let p(x) be a function defined on R such that p'(x)=p'(1-x) for all x ...

    Text Solution

    |

  20. If inta^b(f(x)-3x)dx=a^2-b^2 then the value of f(pi/6) is

    Text Solution

    |