Home
Class 12
MATHS
If f:R in R be such that f(x)=sqrt(sin...

If `f:R in R` be such that
f(x)`=sqrt(sin(cosx))+"In"(-2cos^(2) x+3 cos x-1)`, then `int_(x_(1))^(x_(2)) [cos x-(1)/(2)]dx` is equal to, where `x1.x2 in D` and [.] denotes the greatest integer function,

A

0

B

`(1)/(2)(x_(2)-x_(1))`

C

`x_(1)-x_(2)`

D

`(1)/(2)(x_(1)-x_(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \[ \int_{x_1}^{x_2} \left( \cos x - \frac{1}{2} \right) dx \] where \( x_1 \) and \( x_2 \) are such that the expression inside the greatest integer function, \( \left\lfloor \cos x - \frac{1}{2} \right\rfloor \), is defined. ### Step 1: Analyze the function \( f(x) \) Given: \[ f(x) = \sqrt{\sin(\cos x)} + \ln(-2\cos^2 x + 3\cos x - 1) \] We need to ensure that the logarithmic part is defined. The logarithm is defined when its argument is positive: \[ -2\cos^2 x + 3\cos x - 1 > 0 \] ### Step 2: Solve the inequality Rearranging the inequality gives: \[ 2\cos^2 x - 3\cos x + 1 < 0 \] Let \( y = \cos x \). The quadratic inequality becomes: \[ 2y^2 - 3y + 1 < 0 \] To find the roots, we use the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = \frac{3 \pm \sqrt{9 - 8}}{4} = \frac{3 \pm 1}{4} \] Thus, the roots are: \[ y = 1 \quad \text{and} \quad y = \frac{1}{2} \] ### Step 3: Determine the intervals The quadratic \( 2y^2 - 3y + 1 \) opens upwards (as the coefficient of \( y^2 \) is positive). Therefore, it is negative between the roots: \[ \frac{1}{2} < y < 1 \] This translates back to: \[ \frac{1}{2} < \cos x < 1 \] ### Step 4: Identify the intervals for \( x \) The condition \( \frac{1}{2} < \cos x < 1 \) corresponds to: \[ 0 < x < \frac{\pi}{3} \quad \text{and} \quad \frac{5\pi}{3} < x < 2\pi \] ### Step 5: Evaluate the integral Now we need to evaluate: \[ \int_{x_1}^{x_2} \left( \cos x - \frac{1}{2} \right) dx \] Given that \( \cos x \) varies between \( \frac{1}{2} \) and \( 1 \) in the intervals we identified, we can find the greatest integer function: \[ \cos x - \frac{1}{2} > 0 \] This means: \[ \left\lfloor \cos x - \frac{1}{2} \right\rfloor = 0 \] ### Step 6: Conclusion Thus, the integral simplifies to: \[ \int_{x_1}^{x_2} 0 \, dx = 0 \] The final answer is: \[ \boxed{0} \]

To solve the problem, we need to evaluate the integral \[ \int_{x_1}^{x_2} \left( \cos x - \frac{1}{2} \right) dx \] where \( x_1 \) and \( x_2 \) are such that the expression inside the greatest integer function, \( \left\lfloor \cos x - \frac{1}{2} \right\rfloor \), is defined. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int _(1)^(2)(x^([x^(2)])+[x^(2)]^(x)) d x is equal to where [.] denotes the greatest integer function

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

If f(x) = x+|x|+ cos ([ pi^(2) ]x) and g(x) =sin x, where [.] denotes the greatest integer function, then

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. Let f(x)={(1-|x|","|x|le1),(0","|x|gt1):} and g(x)=f(x-1)"for all" x i...

    Text Solution

    |

  2. If f(x)=(x-1)/(x+1),f^(2)(x)=f(f(x)),……..,……..f^(k+1)(x)=f(f^(k)(x)),k...

    Text Solution

    |

  3. If f:R in R be such that f(x)=sqrt(sin(cosx))+"In"(-2cos^(2) x+3 cos...

    Text Solution

    |

  4. If int(e)^(x) t f(t)dt=sin x-x cos x-(x^(2))/(2) for all x in R-{0}, t...

    Text Solution

    |

  5. If f (x)= int(0)^(x) {f(t)}^(-1) dt and int(0)^(1) {f(t)}^(-1)= sqrt2

    Text Solution

    |

  6. If f(x) is differentiable and int0^(t^2) x f(x) dx=2/5t^5, then f(4/(2...

    Text Solution

    |

  7. The value of int(-2)^2|1-x^2|dx is

    Text Solution

    |

  8. The integral underset(0)overset(pi)int x f(sinx )dx is equal to

    Text Solution

    |

  9. If f(x) =(e^x)/(1+e^x), I1=int(f(-a))^(f(a)) xg(x(1-x))dx, and I2=int(...

    Text Solution

    |

  10. The value of int(-2)^(2) |[x]| dx is equal to

    Text Solution

    |

  11. The value int^(2)(-2) {p" In"((1+x)/(1-x))+q" In "((1-x)/(1+x))-2+r}...

    Text Solution

    |

  12. 7(int0^1(x^4(1-x)^4dx)/(1+x^2)+pi) is equal to

    Text Solution

    |

  13. The value of underset(xrarr0)(lim)(1)/(x^(3)) int(0)^(x)(tln(1+t))/(t^...

    Text Solution

    |

  14. Let f be the function defined on [-pi,pi] given by f(0)=9 and f(x)=sin...

    Text Solution

    |

  15. Let f be a real valued functional defined on the interval (-1,1) such ...

    Text Solution

    |

  16. For any real number x, let [x] denote the largest integer less than or...

    Text Solution

    |

  17. about to only mathematics

    Text Solution

    |

  18. Let p(x) be a function defined on R such that p'(x)=p'(1-x) for all x ...

    Text Solution

    |

  19. If inta^b(f(x)-3x)dx=a^2-b^2 then the value of f(pi/6) is

    Text Solution

    |

  20. The value of (pi^2)/(1n3)int(7/6)^(5/6)sec(pix)dxi s

    Text Solution

    |