Home
Class 12
MATHS
If int(e)^(x) t f(t)dt=sin x-x cos x-(x^...

If `int_(e)^(x) t f(t)dt=sin x-x cos x-(x^(2))/(2)` for all `x in R-{0}`, then the value of `f((pi)/(6))` will be equal to

A

0

B

1

C

`-(1)/(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \int_{e}^{x} t f(t) \, dt = \sin x - x \cos x - \frac{x^2}{2} \] for all \( x \in \mathbb{R} \setminus \{0\} \). We want to find the value of \( f\left(\frac{\pi}{6}\right) \). ### Step 1: Differentiate both sides with respect to \( x \) Using Leibniz's rule for differentiation under the integral sign, we differentiate the left-hand side: \[ \frac{d}{dx} \left( \int_{e}^{x} t f(t) \, dt \right) = x f(x) \] Now, differentiate the right-hand side: \[ \frac{d}{dx} \left( \sin x - x \cos x - \frac{x^2}{2} \right) = \cos x - \left( \cos x - x \sin x \right) - x = x \sin x - x \] ### Step 2: Set the derivatives equal to each other Now we equate the derivatives from both sides: \[ x f(x) = x \sin x - x \] ### Step 3: Simplify the equation We can factor out \( x \) from the right-hand side: \[ x f(x) = x (\sin x - 1) \] Assuming \( x \neq 0 \), we can divide both sides by \( x \): \[ f(x) = \sin x - 1 \] ### Step 4: Find \( f\left(\frac{\pi}{6}\right) \) Now we substitute \( x = \frac{\pi}{6} \) into the function: \[ f\left(\frac{\pi}{6}\right) = \sin\left(\frac{\pi}{6}\right) - 1 \] We know that: \[ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] So we have: \[ f\left(\frac{\pi}{6}\right) = \frac{1}{2} - 1 = -\frac{1}{2} \] ### Final Answer Thus, the value of \( f\left(\frac{\pi}{6}\right) \) is: \[ \boxed{-\frac{1}{2}} \]

To solve the problem, we start with the given equation: \[ \int_{e}^{x} t f(t) \, dt = \sin x - x \cos x - \frac{x^2}{2} \] for all \( x \in \mathbb{R} \setminus \{0\} \). We want to find the value of \( f\left(\frac{\pi}{6}\right) \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If overset(x)underset(e )int t f(t)dt=sin x-x cos x-(x^(2))/(2) for all x in R-{0} , then the value of f((pi)/(6)) will be equal to

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

If int_(0)^(x) f(t)dt=x^(2)+2x-int_(0)^(x) tf(t)dt, x in (0,oo) . Then, f(x) is

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

If f(x) = int_(0)^(x) e^(t^(2)) (t-2) (t-3) dt for all x in (0, oo) , then

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

If f(x)=x+int_0^1t(x+t)f(t) dt ,then the value of 23/2f(0) is equal to _________

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If f(x)=(x-1)/(x+1),f^(2)(x)=f(f(x)),……..,……..f^(k+1)(x)=f(f^(k)(x)),k...

    Text Solution

    |

  2. If f:R in R be such that f(x)=sqrt(sin(cosx))+"In"(-2cos^(2) x+3 cos...

    Text Solution

    |

  3. If int(e)^(x) t f(t)dt=sin x-x cos x-(x^(2))/(2) for all x in R-{0}, t...

    Text Solution

    |

  4. If f (x)= int(0)^(x) {f(t)}^(-1) dt and int(0)^(1) {f(t)}^(-1)= sqrt2

    Text Solution

    |

  5. If f(x) is differentiable and int0^(t^2) x f(x) dx=2/5t^5, then f(4/(2...

    Text Solution

    |

  6. The value of int(-2)^2|1-x^2|dx is

    Text Solution

    |

  7. The integral underset(0)overset(pi)int x f(sinx )dx is equal to

    Text Solution

    |

  8. If f(x) =(e^x)/(1+e^x), I1=int(f(-a))^(f(a)) xg(x(1-x))dx, and I2=int(...

    Text Solution

    |

  9. The value of int(-2)^(2) |[x]| dx is equal to

    Text Solution

    |

  10. The value int^(2)(-2) {p" In"((1+x)/(1-x))+q" In "((1-x)/(1+x))-2+r}...

    Text Solution

    |

  11. 7(int0^1(x^4(1-x)^4dx)/(1+x^2)+pi) is equal to

    Text Solution

    |

  12. The value of underset(xrarr0)(lim)(1)/(x^(3)) int(0)^(x)(tln(1+t))/(t^...

    Text Solution

    |

  13. Let f be the function defined on [-pi,pi] given by f(0)=9 and f(x)=sin...

    Text Solution

    |

  14. Let f be a real valued functional defined on the interval (-1,1) such ...

    Text Solution

    |

  15. For any real number x, let [x] denote the largest integer less than or...

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. Let p(x) be a function defined on R such that p'(x)=p'(1-x) for all x ...

    Text Solution

    |

  18. If inta^b(f(x)-3x)dx=a^2-b^2 then the value of f(pi/6) is

    Text Solution

    |

  19. The value of (pi^2)/(1n3)int(7/6)^(5/6)sec(pix)dxi s

    Text Solution

    |

  20. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |