Home
Class 12
MATHS
The value int^(2)(-2) {p" In"((1+x)/(1...

The value
`int^(2)_(-2) {p" In"((1+x)/(1-x))+q" In "((1-x)/(1+x))-2+r}dx` depends on the value of

A

p

B

q

C

r

D

p and q

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-2}^{2} \left( p \ln \left( \frac{1+x}{1-x} \right) - 2q \ln \left( \frac{1-x}{1+x} \right) + r \right) dx, \] we will break it down step by step. ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ I = \int_{-2}^{2} \left( p \ln \left( \frac{1+x}{1-x} \right) + r - 2q \ln \left( \frac{1-x}{1+x} \right) \right) dx. \] ### Step 2: Use Logarithmic Properties Using the property of logarithms, we can rewrite the second logarithmic term: \[ \ln \left( \frac{1-x}{1+x} \right) = -\ln \left( \frac{1+x}{1-x} \right). \] Thus, we can express the integral as: \[ I = \int_{-2}^{2} \left( p \ln \left( \frac{1+x}{1-x} \right) + r + 2q \ln \left( \frac{1+x}{1-x} \right) \right) dx. \] ### Step 3: Combine the Logarithmic Terms Now we combine the logarithmic terms: \[ I = \int_{-2}^{2} \left( (p + 2q) \ln \left( \frac{1+x}{1-x} \right) + r \right) dx. \] ### Step 4: Separate the Integral We can separate the integral into two parts: \[ I = (p + 2q) \int_{-2}^{2} \ln \left( \frac{1+x}{1-x} \right) dx + \int_{-2}^{2} r \, dx. \] ### Step 5: Evaluate the Integral of r The integral of \( r \) is straightforward: \[ \int_{-2}^{2} r \, dx = r \cdot (2 - (-2)) = 4r. \] ### Step 6: Determine the Nature of the Logarithmic Integral Next, we need to evaluate \[ \int_{-2}^{2} \ln \left( \frac{1+x}{1-x} \right) dx. \] To analyze this integral, we check if the function is odd or even. Let \[ f(x) = \ln \left( \frac{1+x}{1-x} \right). \] Calculating \( f(-x) \): \[ f(-x) = \ln \left( \frac{1-x}{1+x} \right) = -\ln \left( \frac{1+x}{1-x} \right) = -f(x). \] Since \( f(-x) = -f(x) \), \( f(x) \) is an odd function. Therefore, the integral over a symmetric interval around zero is zero: \[ \int_{-2}^{2} \ln \left( \frac{1+x}{1-x} \right) dx = 0. \] ### Step 7: Final Expression for I Substituting this back into our expression for \( I \): \[ I = (p + 2q) \cdot 0 + 4r = 4r. \] ### Conclusion Thus, the value of the integral depends solely on \( r \). The final answer is: \[ \text{The value of the integral depends on } r. \]

To solve the integral \[ I = \int_{-2}^{2} \left( p \ln \left( \frac{1+x}{1-x} \right) - 2q \ln \left( \frac{1-x}{1+x} \right) + r \right) dx, \] we will break it down step by step. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(1)^(2) (dx)/(x(1+x^(4)) is

The value of inte^(tan^-1x) ((1+x+x^2)/(1+x^2))dx

The value of inte^(tan^-1x) ((1+x+x^2)/(1+x^2))dx

The value of int_(0)^(1) (1)/(2x-3)dx is

The value of int _(0)^(4//pi) (3x ^(2) sin ""(1)/(x)-x cos ""(1)/(x )) dx is:

The value of int_0^1 (2^(2x+1)-5^(2x-1))/(10^(x))dx is

The value of int_0^oo(x dx)/((1+x)(1+x^2)) is equal to

The value of int_(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is

The value of int(1+logx)/(sqrt((x^(x))^(2)-1))dx " is "

The value of I=int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Section I - Solved Mcqs
  1. If f(x) =(e^x)/(1+e^x), I1=int(f(-a))^(f(a)) xg(x(1-x))dx, and I2=int(...

    Text Solution

    |

  2. The value of int(-2)^(2) |[x]| dx is equal to

    Text Solution

    |

  3. The value int^(2)(-2) {p" In"((1+x)/(1-x))+q" In "((1-x)/(1+x))-2+r}...

    Text Solution

    |

  4. 7(int0^1(x^4(1-x)^4dx)/(1+x^2)+pi) is equal to

    Text Solution

    |

  5. The value of underset(xrarr0)(lim)(1)/(x^(3)) int(0)^(x)(tln(1+t))/(t^...

    Text Solution

    |

  6. Let f be the function defined on [-pi,pi] given by f(0)=9 and f(x)=sin...

    Text Solution

    |

  7. Let f be a real valued functional defined on the interval (-1,1) such ...

    Text Solution

    |

  8. For any real number x, let [x] denote the largest integer less than or...

    Text Solution

    |

  9. about to only mathematics

    Text Solution

    |

  10. Let p(x) be a function defined on R such that p'(x)=p'(1-x) for all x ...

    Text Solution

    |

  11. If inta^b(f(x)-3x)dx=a^2-b^2 then the value of f(pi/6) is

    Text Solution

    |

  12. The value of (pi^2)/(1n3)int(7/6)^(5/6)sec(pix)dxi s

    Text Solution

    |

  13. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  14. Let f :(0,1) to (0,1) be a differentiable functino such that f '(x) ne...

    Text Solution

    |

  15. The value of the integral int(0)^(2) (log(x^(2)+2))/((x+2)^(2)), dx is

    Text Solution

    |

  16. The following integral int(pi/4)^(pi/2)(2cos e cx)^(17)dx is equal to ...

    Text Solution

    |

  17. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  18. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  19. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  20. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |